对送检文档进行查重
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

35 lines
1.0 KiB

# -*- coding:utf-8 -*-
# @Time: 2023/8/22 14:44
# @Author:ZYP
# @File:fasttext_api.py
# @mail:zypsunshine1@gmail.com
# @Software: PyCharm
import json
import numpy as np
from gensim.models.keyedvectors import KeyedVectors
import time
from flask import Flask, request
app_fasttext = Flask(__name__)
fasttext_path = '/home/zc-nlp-zyp/work_file/ssd_data/public_data/fasttext_model/fasttext.vector'
model_fasttext = KeyedVectors.load_word2vec_format(fasttext_path, binary=True)
@app_fasttext.route('/fasttext', methods=['POST'])
def get_word2vec():
word_dict = json.loads(request.data.decode())
try:
vec = model_fasttext.get_vector(word_dict["word"])
str_vec = ','.join([str(i) for i in vec])
# vec1 = np.array([float(j) for j in str_vec.split(',')], dtype=np.float64)
vec_dict = {'vec': str_vec}
return json.dumps(vec_dict)
except:
return 'error_fasttext'
# if __name__ == '__main__':
# app.run(host='0.0.0.0', port=50002, debug=False)