对送检文档进行查重
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

254 lines
9.8 KiB

# -*- coding = utf-8 -*-
# @Time: 18:01
# @Author:ZYP
# @File:SearchSimPaper.py
# @mail:zypsunshine1@gmail.com
# @Software: PyCharm
import gc
import time
# =========================================================================================
# 查找相似文档
# · 文档之间关键词进行取交集
# · 再对选取出的文档与送检文档进行关键词之间的相似度计算
# · 最终选出最相似的文档,进行排序返回
# =========================================================================================
import math
import numpy as np
from collections import defaultdict
from pymysql.converters import escape_string
from sklearn.metrics.pairwise import cosine_similarity
from util import cut_text, l2_normal, get_word_vec
def load_inverted_table(class_list, mysql, log):
"""根据分类结果,将每个类别的倒排表进行聚合,返回一个几个类别的字典、几个类别库中总论文数量"""
# 记录总的倒排表 {word:[doc_id1,doc_id2,doc_id3, ...]}
total_inverted_dict1 = {}
# 记录每个类别的论文数量的和
total_nums1 = 0
for label_num in class_list:
conn, cursor = mysql.open()
select_sql = """
select word, paper_doc_id from word_map_paper_{};
""".format(str(label_num))
s_time1 = time.time()
cursor.execute(select_sql)
for word, paper_doc_id in cursor.fetchall():
if word not in total_inverted_dict1.keys():
total_inverted_dict1[word] = paper_doc_id
else:
# total_inverted_dict1[word] = ','.join(
# set(total_inverted_dict1[word].split(',') + paper_doc_id.split(',')))
total_inverted_dict1[word] = total_inverted_dict1[word] + ',' + paper_doc_id
e_time1 = time.time()
log.log('查找{}类倒排表花费的时间:{}s'.format(str(label_num), e_time1 - s_time1))
s_time2 = time.time()
select_paper_num_sql = """
select count_number from count_map where label_num={};
""".format(str(label_num))
cursor.execute(select_paper_num_sql)
for nums in cursor.fetchall():
total_nums1 += int(nums[0])
e_time2 = time.time()
log.log('查找{}类别下数据量花费:{}s'.format(str(label_num), e_time2 - s_time2))
mysql.close(cursor, conn)
return total_inverted_dict1, total_nums1
def select_sim_doc_message(sim_doc1, mysql):
"""
通过相似的 doc_id 在库中查找相关的信息,然后计算每个 doc_id 的均值文档向量,以字典形式返回 {文档号:均值文档向量....}
:param sim_doc1: 相似文档的列表,[doc_id1, doc_id2, ...]
:return: 返回{doc_id:(doc_avg_vec, doc_path)}
"""
all_paper_vec_dict = {}
conn, cursor = mysql.open()
for doc_id in sim_doc1:
select_sql = """
select tb1.doc_id, tb1.title, tb1.abst_zh, tb2.vsm, tb1.content from
(
(select doc_id, title, abst_zh, content from main_table_paper_detail_message) tb1
left join
(select doc_id, vsm from id_keywords_weights) tb2
on
tb1.doc_id=tb2.doc_id
)where tb1.doc_id="{}";
""".format(
escape_string(doc_id))
cursor.execute(select_sql)
sim_doc_id, sim_title, sim_abst, sim_vsm, sim_content_path = cursor.fetchone()
sim_vsm_dict = {weight.split('@#$@')[0]: float(weight.split('@#$@')[1]) for weight in sim_vsm.split('&*^%')}
vector_paper = []
value_sum = 0.0
for word, weight in sim_vsm_dict.items():
if word in sim_title:
value = 0.5 * weight
elif word in sim_abst:
value = 0.3 * weight
else:
value = 0.2 * weight
word_vec = get_word_vec(word)
if isinstance(word_vec, int):
continue
vector_paper.append(word_vec * value)
value_sum += value
del sim_vsm_dict
gc.collect()
# 求一篇文档的关键词的向量均值
# avg_vector = np.array(np.sum(np.array(vector_paper, dtype=np.float32), axis=0) / len(vector_paper))
avg_vector = np.array(np.sum(np.array(vector_paper, dtype=np.float32), axis=0) / value_sum)
all_paper_vec_dict[doc_id] = (avg_vector, sim_content_path)
mysql.close(cursor, conn)
return all_paper_vec_dict
def submit_paper_avg_vec(paper_dict1, tf_weight_dict):
"""根据送检的文档的 tf 值,计算这篇文档的均值向量,以 numpy 数组形式返回"""
vector_paper = []
value_sum = 0.0
for word, weight in tf_weight_dict.items():
if word in paper_dict1['title']:
value = 0.5 * weight
elif word in paper_dict1['abst_zh']:
value = 0.3 * weight
else:
value = 0.2 * weight
word_vec = get_word_vec(word)
if isinstance(word_vec, int):
continue
vector_paper.append(word_vec * value)
value_sum += value
# avg_vector = np.array(np.sum(np.array(vector_paper, dtype=np.float32), axis=0) / len(vector_paper))
avg_vector = np.array(np.sum(np.array(vector_paper, dtype=np.float32), axis=0) / value_sum)
return avg_vector
def compare_sim_in_papers(check_vector, sim_message, top=40):
"""
计算文档间的相似度,使用的是余弦相似度
:param check_vector: 送检文章的文本向量
:param sim_message: 待检测的 50 篇相似文档,以字典形式存储
:param top: 设置返回最相似的 N 篇文档
:return: 返回相似文档的字典 形式:{doc_id:(相似得分, 文档路径)}
"""
sim_res_dict = {}
for doc_id, (vector, content_path) in sim_message.items():
# sim_res_dict[doc_id] = cosine_similarity([scalar(check_vector), scalar(vector)])[0][1]
sim_res_dict[doc_id] = (str(cosine_similarity([check_vector, vector])[0][1]), content_path)
_ = sorted(sim_res_dict.items(), key=lambda x: float(x[1][0]), reverse=True)
return {key: value for key, value in _[:top]}
def search_sim_paper(paper_dict, class_list, mysql, log, top=100):
"""
根据送检论文的字典,在库中进行相似文档的查询,最后返回最相似的 top 文章,用于逐句查重。
:param paper_dict: 处理好的格式化送检论文
:param class_list: 模型预测送检论文的类别 id 的列表
:param top: 返回前 top 个文档
:return: 返回相似文档的字典 形式:{doc_id:(相似得分, 文档路径)}
"""
all_str = paper_dict['title'] + '' + paper_dict['abst_zh'] + '' + paper_dict['content']
# 合并倒排表,并统计 论文总量 total_inverted_dict:总的倒排表
s0 = time.time()
total_inverted_dict, total_nums = load_inverted_table(class_list, mysql, log)
e0 = time.time()
log.log('查询倒排表花费时间为:{}s'.format(e0 - s0))
s1 = time.time()
# 计算送检文档的词频字典{word1:fre1, word2:fre2, ...}
word_fre_dict = cut_text(all_str, tokenizer='jieba')
e1 = time.time()
log.log('切词时间为:{}s'.format(e1 - s1))
s2 = time.time()
# 计算送检文档所有词语的 tf-idf 值
tf_idf_dict = {}
for word, freq in word_fre_dict.items():
if freq <= 2:
continue
tf = freq / sum(word_fre_dict.values())
if word in total_inverted_dict.keys():
idf = math.log(total_nums / (len(set(total_inverted_dict[word].split(','))) + 1))
else:
idf = math.log(total_nums / 1)
tf_idf = tf * idf
tf_idf_dict[word] = tf_idf
e2 = time.time()
log.log('计算送检文档关键词的TF-idf值花费的时间为:{}s'.format(e2 - s2))
s3 = time.time()
# 前 15 的单词、权重
tf_dict = l2_normal(tf_idf_dict)
e3 = time.time()
log.log('权重正则化花费的时间为:{}s'.format(e3 - s3))
s4 = time.time()
# 统计交集的
count_words_num = defaultdict(int)
for word, weight in tf_dict.items():
if word in total_inverted_dict.keys():
for doc_id in set(total_inverted_dict[word].split(',')):
count_words_num[doc_id] += 1
else:
continue
e4 = time.time()
log.log('统计doc_id交集花费的时间为:{}s'.format(e4 - s4))
# 排序
count_word_num = {i: j for i, j in sorted(count_words_num.items(), key=lambda x: x[1], reverse=True)}
# 查找前 200 篇相似的文档
sim_doc = list(count_word_num.keys())[:200]
# 计算这 200 篇文档的 文档均值向量
s_time1 = time.time()
sim_paper_vec_dict = select_sim_doc_message(sim_doc, mysql)
e_time1 = time.time()
log.log('计算200篇均值向量所花费的时间为:{}s'.format(e_time1 - s_time1))
# 计算送检文档的 文档均值向量
s_time2 = time.time()
submit_vec = submit_paper_avg_vec(paper_dict, tf_dict)
e_time2 = time.time()
log.log('计算送检文档的均值向量所花费的时间为:{}s'.format(e_time2 - s_time2))
# 计算送检文档 和 查出来的文档的相似度 并排序, 取 top 10 文章用作整篇查重
s_time3 = time.time()
sim_paper_dict = compare_sim_in_papers(submit_vec, sim_paper_vec_dict, top=top)
e_time3 = time.time()
log.log('计算送检文档和查出的文档的相似度(并排序)所花费的时间为:{}s'.format(e_time3 - s_time3))
del total_inverted_dict
del total_nums
del submit_vec
del sim_paper_vec_dict
del count_word_num
del sim_doc
del word_fre_dict
gc.collect()
return sim_paper_dict