对送检文档进行查重
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

146 lines
5.2 KiB

# -*- coding = utf-8 -*-
# @Time: 18:02
# @Author:ZYP
# @File:util.py
# @mail:zypsunshine1@gmail.com
# @Software: PyCharm
# =========================================================================================
# 工具类
# 用于加载停用词、数据库、word2vec、fasttext模型
# =========================================================================================
import os
import math
import jieba
import pymysql
from pyhanlp import HanLP
from collections import defaultdict
from textrank4zh import TextRank4Keyword
from gensim.models.keyedvectors import KeyedVectors
stop_word_path = '/home/zc-nlp-zyp/work_file/ssd_data/program/check_paper/fasttext_train/data/total_stopwords.txt'
jieba.load_userdict('/home/zc-nlp-zyp/work_file/ssd_data/program/check_paper/fasttext_train/data'
'/user_dict_final_230316.txt')
os.environ['JAVA_HOME'] = '/home/zc-nlp-zyp/work_file/software/jdk1.8.0_341'
def deal_paper(target_paper_path):
"""根据不同格式的论文进行相应的清洗策略,将杂乱的文本处理成字典形式,分为 题目、摘要、正文 等,然后返回字典格式"""
paper_dict = {}
"""
具体的清洗策略,具体情况、具体分析(清洗等)
"""
return paper_dict
class MysqlConnect:
"""mysql 的连接类,创建 mysql 连接对象"""
def __init__(self, host='localhost', user='root', passwd='123456', database='zhiwang_class_db', charset='utf8'):
self.conn = pymysql.connect(host=host, user=user, passwd=passwd, database=database, charset=charset)
self.cursor = self.conn.cursor()
def implement_sql(self, sql, is_close=True):
"""向sql中插入数据,查询完成后关闭连接"""
self.cursor.execute(sql)
self.conn.commit()
if is_close:
self.cursor.close()
self.conn.close()
def select_sql(self, sql, is_close=True):
"""向sql中插入数据,查询完成后关闭连接"""
self.cursor.execute(sql)
res = [i for i in self.cursor.fetchall()]
if is_close:
self.cursor.close()
self.conn.close()
return res
def close_connect(self):
self.cursor.close()
self.conn.close()
def load_stopwords(path=stop_word_path):
"""加载停用词"""
with open(path, 'r', encoding='utf-8') as f:
stop_words = {i.strip() for i in f.readlines()}
return stop_words
def cut_text(text_str, tokenizer='jieba'):
"""使用相应的分词算法对文章进行分词,然后统计每个单词的词频,按照降序返回相应的字典"""
word_dict = defaultdict(int)
if tokenizer == 'jieba':
all_word_list = jieba.cut(text_str)
for word in all_word_list:
if word not in stop_word:
word_dict[word] += 1
elif tokenizer == 'hanlp':
for i in HanLP.segment(text_str):
if i.word not in stop_word and i.nature != 'w':
word_dict[i.word] += 1
else:
print('您输入的 tokenizer 参数有误!')
return {k: v for k, v in sorted(word_dict.items(), key=lambda x: x[1], reverse=True)}
def l2_normal(tf_idf_dict):
"""对计算出来的tf-idf字典进行归一化,归一到(0-1)之间"""
l2_norm = math.sqrt(sum(map(lambda x: x ** 2, tf_idf_dict.values())))
tf_idf_dict1 = sorted(tf_idf_dict.items(), key=lambda x: x[1] / l2_norm, reverse=True)
tf_idf_dict2 = {key: value / l2_norm for key, value in tf_idf_dict1[:15]}
return tf_idf_dict2
def save_result(output_dir, result_dict):
"""
将查重结果字典进行本地化存储
:param output_dir: 结果的输出路径
:param result_dict: 结果字典
:return:
"""
output_path = os.path.join(output_dir, 'check_res.txt')
f1 = open(output_path, 'a', encoding='utf-8')
for doc_id, sent_dict in result_dict.items():
select_sql = """
select title from main_table_paper_detail_message where doc_id='{}'
""".format(str(doc_id))
mysql.cursor.execute(select_sql)
title_name = mysql.cursor.fetchone()[0]
for in_check_sent, out_check_sent_list in sent_dict.items():
f1.write(
in_check_sent + '||||' + "" + title_name + "" + '||||' + "[SEP]".join(out_check_sent_list) + '\n')
f1.write('=' * 100 + '\n')
f1.close()
def get_word_vec(word):
"""根据相应的词语,使用模型进行提取词语向量,如果不存在词表中返回0,存在词表中返回对应向量"""
if word in model_word2vec.key_to_index.keys():
vec = model_word2vec.get_vector(word)
else:
try:
vec = model_fasttext.get_vector(word)
except:
return 0
return vec
# 加载 word2vec 模型
word2vec_path = ''
model_word2vec = KeyedVectors.load_word2vec_format(word2vec_path)
fasttext_path = ''
model_fasttext = KeyedVectors.load_word2vec_format(fasttext_path)
stop_word = load_stopwords()
mysql = MysqlConnect(database='zhiwang_class_db')
tr4w = TextRank4Keyword(stop_words_file=stop_word_path)