# -*- coding = utf-8 -*- # @Time: 16:41 # @Author:ZYP # @File:LoadRoformer.py # @mail:zypsunshine1@gmail.com # @Software: PyCharm # ========================================================================================= # 加载深度学习模型 # · 加载论文分类模型 # · 加载 BERT 模型 # ========================================================================================= import json import numpy as np from bert4keras.models import build_transformer_model from keras.layers import Lambda, Dense from keras.models import Model from bert4keras.tokenizers import Tokenizer def load_roformer_model(config, ckpt, model_weight_path): """加载训练好的168多标签分类模型""" roformer = build_transformer_model( config_path=config, checkpoint_path=ckpt, model='roformer_v2', return_keras_model=False) output = Lambda(lambda x: x[:, 0])(roformer.model.output) output = Dense( units=class_nums, kernel_initializer=roformer.initializer )(output) model1 = Model(roformer.model.input, output) model1.load_weights(model_weight_path) model1.summary() return model1 def load_label(label_path1): """加载label2id、id2label、每个类别的阈值,用于分类""" with open(label_path1, 'r', encoding='utf-8') as f: json_dict = json.load(f) label2id1 = {i: j[0] for i, j in json_dict.items()} id2label1 = {j[0]: i for i, j in json_dict.items()} label_threshold1 = np.array([j[1] for i, j in json_dict.items()]) return label2id1, id2label1, label_threshold1 def encode(text_list1): """将文本列表进行循环编码""" sent_token_id1, sent_segment_id1 = [], [] for index, text in enumerate(text_list1): if index == 0: token_id, segment_id = tokenizer_roformer.encode(text) else: token_id, segment_id = tokenizer_roformer.encode(text) token_id = token_id[1:] segment_id = segment_id[1:] if (index + 1) % 2 == 0: segment_id = [1] * len(token_id) sent_token_id1 += token_id sent_segment_id1 += segment_id if len(sent_token_id1) > max_len: sent_token_id1 = sent_token_id1[:max_len] sent_segment_id1 = sent_segment_id1[:max_len] sent_token_id = np.array([sent_token_id1]) sent_segment_id = np.array([sent_segment_id1]) return sent_token_id, sent_segment_id def load_bert_model(config, ckpt, model_weight_path): """加载 BERT 模型""" bert = build_transformer_model( config_path=config, checkpoint_path=ckpt, model='bert', return_keras_model=False) output = Lambda(lambda x: x[:, 0])(bert.model.output) model1 = Model(bert.model.input, output) model1.load_weights(model_weight_path) model1.summary() return model1 def return_sent_vec(sent_list): """ 使用 bert 模型,将句子列表转化为 句子向量 :param sent_list: 句子的列表 :return: 返回两个值(句子的列表,对应的句子向量列表) """ sent_vec_list = [] for sent in sent_list: token_ids, segment_ids = tokenizer_bert.encode(sent, maxlen=512) sent_vec = bert_model.predict([np.array([token_ids]), np.array([segment_ids])]) sent_vec_list.append(sent_vec[0].tolist()) return sent_list, sent_vec_list def pred_class_num(target_paper_dict): """将分类的预测结果进行返回,返回对应库的下标,同时对送检论文的要求处理成字典形式,包括 title、key_words、abst_zh、content 等""" text_list1 = [target_paper_dict['title'], target_paper_dict['key_words']] abst_zh = target_paper_dict['abst_zh'] if len(abst_zh.split("。")) <= 10: text_list1.append(abst_zh) else: text_list1.append("。".join(abst_zh.split('。')[:5])) text_list1.append("。".join(abst_zh.split('。')[-5:])) sent_token, segment_ids = encode(text_list1) y_pred = model_roformer.predict([sent_token, segment_ids]) idx = np.where(y_pred[0] > label_threshold, 1, 0) pred_label_num = [index for index, i in enumerate(idx) if i == 1] return pred_label_num # ========================================================================================================================= # roformer 模型的参数 # ========================================================================================================================= class_nums = 168 max_len = 1500 roformer_config_path = '' roformer_ckpt_path = '' roformer_vocab_path = '' roformer_model_weights_path = '' label_path = '../data/label_threshold.txt' # roformer 模型的分词器 tokenizer_roformer = Tokenizer(roformer_vocab_path) # 加载label的相关信息 label2id, id2label, label_threshold = load_label(label_path) # 加载训练后的分类模型 model_roformer = load_roformer_model(roformer_config_path, roformer_ckpt_path, roformer_model_weights_path) # ========================================================================================================================= # bert 模型的参数 # ========================================================================================================================= bert_config_path = '' bert_ckpt_path = '' bert_vocab_path = '' bert_model_weight_path = '' # bert 模型的分词器 tokenizer_bert = Tokenizer(bert_vocab_path) # 加载 bert 模型进行提取句向量 bert_model = load_bert_model(bert_config_path, bert_ckpt_path, bert_model_weight_path)