对送检文档进行查重
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

152 lines
5.6 KiB

# -*- coding = utf-8 -*-
# @Time: 16:41
# @Author:ZYP
# @File:LoadRoformer.py
# @mail:zypsunshine1@gmail.com
# @Software: PyCharm
# =========================================================================================
# 加载深度学习模型
# · 加载论文分类模型
# · 加载 BERT 模型
# =========================================================================================
import json
import numpy as np
from bert4keras.models import build_transformer_model
from keras.layers import Lambda, Dense
from keras.models import Model
from bert4keras.tokenizers import Tokenizer
def load_roformer_model(config, ckpt, model_weight_path):
"""加载训练好的168多标签分类模型"""
roformer = build_transformer_model(
config_path=config,
checkpoint_path=ckpt,
model='roformer_v2',
return_keras_model=False)
output = Lambda(lambda x: x[:, 0])(roformer.model.output)
output = Dense(
units=class_nums,
kernel_initializer=roformer.initializer
)(output)
model1 = Model(roformer.model.input, output)
model1.load_weights(model_weight_path)
model1.summary()
return model1
def load_label(label_path1):
"""加载label2id、id2label、每个类别的阈值,用于分类"""
with open(label_path1, 'r', encoding='utf-8') as f:
json_dict = json.load(f)
label2id1 = {i: j[0] for i, j in json_dict.items()}
id2label1 = {j[0]: i for i, j in json_dict.items()}
label_threshold1 = np.array([j[1] for i, j in json_dict.items()])
return label2id1, id2label1, label_threshold1
def encode(text_list1):
"""将文本列表进行循环编码"""
sent_token_id1, sent_segment_id1 = [], []
for index, text in enumerate(text_list1):
if index == 0:
token_id, segment_id = tokenizer_roformer.encode(text)
else:
token_id, segment_id = tokenizer_roformer.encode(text)
token_id = token_id[1:]
segment_id = segment_id[1:]
if (index + 1) % 2 == 0:
segment_id = [1] * len(token_id)
sent_token_id1 += token_id
sent_segment_id1 += segment_id
if len(sent_token_id1) > max_len:
sent_token_id1 = sent_token_id1[:max_len]
sent_segment_id1 = sent_segment_id1[:max_len]
sent_token_id = np.array([sent_token_id1])
sent_segment_id = np.array([sent_segment_id1])
return sent_token_id, sent_segment_id
def load_bert_model(config, ckpt, model_weight_path):
"""加载 BERT 模型"""
bert = build_transformer_model(
config_path=config,
checkpoint_path=ckpt,
model='bert',
return_keras_model=False)
output = Lambda(lambda x: x[:, 0])(bert.model.output)
model1 = Model(bert.model.input, output)
model1.load_weights(model_weight_path)
model1.summary()
return model1
def return_sent_vec(sent_list):
"""
使用 bert 模型将句子列表转化为 句子向量
:param sent_list: 句子的列表
:return: 返回两个值句子的列表对应的句子向量列表
"""
sent_vec_list = []
for sent in sent_list:
token_ids, segment_ids = tokenizer_bert.encode(sent, maxlen=512)
sent_vec = bert_model.predict([np.array([token_ids]), np.array([segment_ids])])
sent_vec_list.append(sent_vec[0].tolist())
return sent_list, sent_vec_list
def pred_class_num(target_paper_dict):
"""将分类的预测结果进行返回,返回对应库的下标,同时对送检论文的要求处理成字典形式,包括 title、key_words、abst_zh、content 等"""
text_list1 = [target_paper_dict['title'], target_paper_dict['key_words']]
abst_zh = target_paper_dict['abst_zh']
if len(abst_zh.split("")) <= 10:
text_list1.append(abst_zh)
else:
text_list1.append("".join(abst_zh.split('')[:5]))
text_list1.append("".join(abst_zh.split('')[-5:]))
sent_token, segment_ids = encode(text_list1)
y_pred = model_roformer.predict([sent_token, segment_ids])
idx = np.where(y_pred[0] > label_threshold, 1, 0)
pred_label_num = [index for index, i in enumerate(idx) if i == 1]
return pred_label_num
# =========================================================================================================================
# roformer 模型的参数
# =========================================================================================================================
class_nums = 168
max_len = 1500
roformer_config_path = ''
roformer_ckpt_path = ''
roformer_vocab_path = ''
roformer_model_weights_path = ''
label_path = '../data/label_threshold.txt'
# roformer 模型的分词器
tokenizer_roformer = Tokenizer(roformer_vocab_path)
# 加载label的相关信息
label2id, id2label, label_threshold = load_label(label_path)
# 加载训练后的分类模型
model_roformer = load_roformer_model(roformer_config_path, roformer_ckpt_path, roformer_model_weights_path)
# =========================================================================================================================
# bert 模型的参数
# =========================================================================================================================
bert_config_path = ''
bert_ckpt_path = ''
bert_vocab_path = ''
bert_model_weight_path = ''
# bert 模型的分词器
tokenizer_bert = Tokenizer(bert_vocab_path)
# 加载 bert 模型进行提取句向量
bert_model = load_bert_model(bert_config_path, bert_ckpt_path, bert_model_weight_path)