You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
3.8 KiB
122 lines
3.8 KiB
import os
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
|
|
from flask import Flask, jsonify
|
|
from flask import request
|
|
from transformers import pipeline
|
|
import redis
|
|
import uuid
|
|
import json
|
|
from threading import Thread
|
|
from vllm import LLM, SamplingParams
|
|
import time
|
|
import threading
|
|
import time
|
|
import concurrent.futures
|
|
import requests
|
|
import socket
|
|
|
|
def get_host_ip():
|
|
"""
|
|
查询本机ip地址
|
|
:return: ip
|
|
"""
|
|
try:
|
|
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
|
s.connect(('8.8.8.8', 80))
|
|
ip = s.getsockname()[0]
|
|
finally:
|
|
s.close()
|
|
|
|
return ip
|
|
|
|
app = Flask(__name__)
|
|
app.config["JSON_AS_ASCII"] = False
|
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=11, password="zhicheng123*")
|
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
|
|
|
|
db_key_query = 'query'
|
|
db_key_query_articles_directory = 'query_articles_directory'
|
|
db_key_result = 'result'
|
|
batch_size = 32
|
|
|
|
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>", max_tokens=4096)
|
|
models_path = "/home/majiahui/model-llm/openbuddy-llama-7b-finetune"
|
|
llm = LLM(model=models_path, tokenizer_mode="slow")
|
|
|
|
|
|
def dialog_line_parse(url, text):
|
|
"""
|
|
将数据输入模型进行分析并输出结果
|
|
:param url: 模型url
|
|
:param text: 进入模型的数据
|
|
:return: 模型返回结果
|
|
"""
|
|
|
|
response = requests.post(
|
|
url,
|
|
json=text,
|
|
timeout=1000
|
|
)
|
|
if response.status_code == 200:
|
|
return response.json()
|
|
else:
|
|
# logger.error(
|
|
# "【{}】 Failed to get a proper response from remote "
|
|
# "server. Status Code: {}. Response: {}"
|
|
# "".format(url, response.status_code, response.text)
|
|
# )
|
|
print("【{}】 Failed to get a proper response from remote "
|
|
"server. Status Code: {}. Response: {}"
|
|
"".format(url, response.status_code, response.text))
|
|
print(text)
|
|
return []
|
|
|
|
|
|
def classify(batch_size): # 调用模型,设置最大batch_size
|
|
while True:
|
|
texts = []
|
|
query_ids = []
|
|
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
|
|
time.sleep(2)
|
|
continue
|
|
for i in range(min(redis_.llen(db_key_query), batch_size)):
|
|
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
|
|
query_ids.append(json.loads(query)['id'])
|
|
texts.append(json.loads(query)['text']) # 拼接若干text 为batch
|
|
outputs = llm.generate(texts, sampling_params) # 调用模型
|
|
|
|
generated_text_list = [""] * len(texts)
|
|
print("outputs", outputs)
|
|
for i, output in enumerate(outputs):
|
|
index = output.request_id
|
|
generated_text = output.outputs[0].text
|
|
generated_text_list[int(index)] = generated_text
|
|
|
|
|
|
for (id_, output) in zip(query_ids, generated_text_list):
|
|
res = output
|
|
redis_.set(id_, json.dumps(res)) # 将模型结果送回队列
|
|
|
|
|
|
@app.route("/predict", methods=["POST"])
|
|
def handle_query():
|
|
text = request.json["texts"] # 获取用户query中的文本 例如"I love you"
|
|
id_ = str(uuid.uuid1()) # 为query生成唯一标识
|
|
d = {'id': id_, 'text': text} # 绑定文本和query id
|
|
redis_.rpush(db_key_query, json.dumps(d)) # 加入redis
|
|
while True:
|
|
result = redis_.get(id_) # 获取该query的模型结果
|
|
if result is not None:
|
|
redis_.delete(id_)
|
|
result_text = {'code': "200", 'data': json.loads(result)}
|
|
break
|
|
time.sleep(1)
|
|
|
|
return jsonify(result_text) # 返回结果
|
|
|
|
|
|
t = Thread(target=classify, args=(batch_size,))
|
|
t.start()
|
|
|
|
if __name__ == "__main__":
|
|
app.run(debug=False, host='0.0.0.0', port=18001)
|