使用vllm部署
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

481 lines
15 KiB

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from flask import Flask, jsonify
from flask import request
# from linshi import autotitle
import requests
import redis
import uuid
import json
from threading import Thread
import time
import re
import logging
from config_llama_api import Config
import numpy as np
import math
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch
from vllm import LLM, SamplingParams
config = Config()
model_path = '/home/majiahui/models-LLM/openbuddy-llama-7b-finetune-v3'
# model_path = '/home/majiahui/models-LLM/openbuddy-openllama-7b-v5-fp16'
# model_path = '/home/majiahui/models-LLM/baichuan-vicuna-chinese-7b'
# model_path = '/home/majiahui/models-LLM/openbuddy-llama-7b-v1.4-fp16'
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>")
models_path = model_path
llm = LLM(model=models_path)
# WEIGHTS_NAME = "adapter_model.bin"
# checkpoint_dir = "/home/majiahui/project2/LLaMA-Efficient-Tuning/path_to_sft_checkpoint_paper_prompt_freeze_checkpoint_new_48000/checkpoint-16000"
# weights_file = os.path.join(checkpoint_dir, WEIGHTS_NAME)
# assert os.path.exists(weights_file), f"Provided path ({checkpoint_dir}) does not contain the pretrained weights."
# model_state_dict = torch.load(weights_file, map_location="cuda")
# model.load_state_dict(model_state_dict, strict=False) # skip missing keys
# model = model.cuda()
redis_title = "redis_title"
pool = redis.ConnectionPool(host=config.reids_ip, port=config.reids_port, max_connections=50, db=config.reids_db)
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
app = Flask(__name__)
app.config["JSON_AS_ASCII"] = False
# mulu_prompt = "为论文题目“{}”生成目录,要求只有一级标题和二级标题,一级标题使用中文数字 例如一、xxx;二级标题使用阿拉伯数字 例如1.1 xxx;一级标题不少于7个;每个一级标题至少包含3个二级标题"
# first_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的大标题“{}”的内容补充完整,补充内容字数在{}字左右"
# small_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的小标题“{}”的内容补充完整,补充内容字数在{}字左右"
# references_prompt = "论文题目是“{}”,目录是“{}”,请为这篇论文生成15篇左右的参考文献,要求其中有有中文参考文献不低于12篇,英文参考文献不低于2篇"
# thank_prompt = "请以“{}”为题写一篇论文的致谢"
# kaitibaogao_prompt = "请以《{}》为题目生成研究的主要的内容、背景、目的、意义,要求不少于1500字"
# chinese_abstract_prompt = "请以《{}》为题目生成论文摘要,要求生成的字数在600字左右"
# english_abstract_prompt = "请把“{}”这段文字翻译成英文"
# chinese_keyword_prompt = "请为“{}”这段论文摘要生成3-5个关键字,使用阿拉伯数字作为序号标注,例如“1.xxx \\n2.xxx \\n3.xxx \\n4.xxx \\n5.xxx \\n"
# english_keyword_prompt = "请把“{}”这几个关键字翻译成英文"
def normal_distribution(x):
y = np.exp(-(x - config.u) ** 2 / (2 * config.sig ** 2)) / (math.sqrt(2 * math.pi) * config.sig)
return y
def request_chatglm(prompt):
outputs = llm.generate([prompt], sampling_params)
generated_text = outputs[0].outputs[0].text
return generated_text
def chat_kaitibaogao(main_parameter):
response = request_chatglm(config.kaitibaogao_prompt.format(main_parameter[0]))
return response
def chat_abstract_keyword(main_parameter):
# 生成中文摘要
chinese_abstract = request_chatglm(config.chinese_abstract_prompt.format(main_parameter[0],main_parameter[1]))
# 生成英文的摘要
english_abstract = request_chatglm(config.english_abstract_prompt.format(chinese_abstract))
# 生成中文关键字
chinese_keyword = request_chatglm(config.chinese_keyword_prompt.format(chinese_abstract))
# 生成英文关键字
english_keyword = request_chatglm(config.english_keyword_prompt.format(chinese_keyword))
paper_abstract_keyword = {
"中文摘要": chinese_abstract,
"英文摘要": english_abstract,
"中文关键词": chinese_keyword,
"英文关键词": english_keyword
}
return paper_abstract_keyword
def chat_content(main_parameter):
'''
:param api_key:
:param uuid:
:param main_parameter:
:return:
'''
content_index = main_parameter[0]
title = main_parameter[1]
mulu = main_parameter[2]
subtitle = main_parameter[3]
prompt = main_parameter[4]
word_count = main_parameter[5]
if subtitle[:2] == "@@":
response = subtitle[2:]
else:
response = request_chatglm(prompt.format(title, mulu, subtitle, word_count))
if subtitle not in response:
response = subtitle + "\n" + response
print(prompt.format(title, mulu, subtitle, word_count), response)
return response
def chat_thanks(main_parameter):
'''
:param api_key:
:param uuid:
:param main_parameter:
:return:
'''
# title,
# thank_prompt
title = main_parameter[0]
prompt = main_parameter[1]
response = request_chatglm(prompt.format(title))
return response
def chat_references(main_parameter):
'''
:param api_key:
:param uuid:
:param main_parameter:
:return:
'''
# title,
# mulu,
# references_prompt
title = main_parameter[0]
mulu = main_parameter[1]
prompt = main_parameter[2]
response = request_chatglm(prompt.format(title, mulu))
# 加锁 读取resis并存储结果
return response
def small_title_tesk(small_title):
'''
顺序读取子任务
:return:
'''
task_type = small_title["task_type"]
main_parameter = small_title["main_parameter"]
# "task_type": "paper_content",
# "uuid": uuid,
# "main_parameter": [
# "task_type": "paper_content",
# "task_type": "chat_abstract",
# "task_type": "kaitibaogao",
if task_type == "kaitibaogao":
# result = chat_kaitibaogao(main_parameter)
result = ""
elif task_type == "chat_abstract":
result= chat_abstract_keyword(main_parameter)
elif task_type == "paper_content":
result = chat_content(main_parameter)
elif task_type == "thanks_task":
# result = chat_thanks(main_parameter)
result = ""
elif task_type == "references_task":
# result = chat_references(main_parameter)
result = ""
else:
result = ""
print(result, task_type, main_parameter)
return result, task_type
def main_prrcess(title):
mulu = request_chatglm(config.mulu_prompt.format(title))
mulu_list = mulu.split("\n")
mulu_list = [i.strip() for i in mulu_list if i != ""]
# mulu_str = "@".join(mulu_list)
mulu_list_bool = []
for i in mulu_list:
result_biaoti_list = re.findall(config.pantten_biaoti, i)
if result_biaoti_list != []:
mulu_list_bool.append((i, "一级标题"))
else:
mulu_list_bool.append((i, "二级标题"))
mulu_list_bool_part = mulu_list_bool[:3]
if mulu_list_bool_part[0][1] != "一级标题":
redis_.lpush(redis_title, json.dumps({"id": uuid, "title": title}, ensure_ascii=False)) # 加入redis
redis_.persist(redis_title)
return
if mulu_list_bool_part[0][1] == mulu_list_bool_part[1][1] == mulu_list_bool_part[2][1] == "一级标题":
redis_.lpush(redis_title, json.dumps({"id": uuid, "title": title}, ensure_ascii=False)) # 加入redis
redis_.persist(redis_title)
return
table_of_contents = []
thanks_references_bool_table = mulu_list_bool[-5:]
# thanks = "致谢"
# references = "参考文献"
for i in thanks_references_bool_table:
if config.references in i[0]:
mulu_list_bool.remove(i)
if config.thanks in i[0]:
mulu_list_bool.remove(i)
if config.excursus in i[0]:
mulu_list_bool.remove(i)
title_key = ""
# for i in mulu_list_bool:
# if i[1] == "一级标题":
# table_of_contents["@@" + i[0]] = []
# title_key = "@@" + i[0]
# else:
# table_of_contents[title_key].append(i[0])
for i in mulu_list_bool:
if i[1] == "一级标题":
paper_dan = {
"title": "@@" + i[0],
"small_title": [],
"word_count": 0
}
table_of_contents.append(paper_dan)
else:
table_of_contents[-1]["small_title"].append(i[0])
x_list = [0]
y_list = [normal_distribution(0)]
gradient = config.zong_gradient / len(table_of_contents)
for i in range(len(table_of_contents) - 1):
x_gradient = x_list[-1] + gradient
x_list.append(x_gradient)
y_list.append(normal_distribution(x_list[-1]))
dan_gradient = config.paper_word_count / sum(y_list)
for i in range(len(y_list)):
table_of_contents[i]["word_count"] = dan_gradient * y_list[i]
print(table_of_contents)
print(len(table_of_contents))
table_of_contents_new = []
for dabiaoti_index in range(len(table_of_contents)):
dabiaoti_dict = table_of_contents[dabiaoti_index]
table_of_contents_new.append([dabiaoti_dict["title"], 0])
for xiaobiaoti in dabiaoti_dict["small_title"]:
table_of_contents_new.append(
[xiaobiaoti, int(dabiaoti_dict["word_count"] / len(dabiaoti_dict["small_title"]))])
small_task_list = []
# api_key,
# index,
# title,
# mulu,
# subtitle,
# prompt
kaitibaogao_task = {
"task_type": "kaitibaogao",
"uuid": uuid,
"main_parameter": [title]
}
chat_abstract_task = {
"task_type": "chat_abstract",
"uuid": uuid,
"main_parameter": [title, mulu]
}
small_task_list.append(kaitibaogao_task)
small_task_list.append(chat_abstract_task)
content_index = 0
while True:
if content_index == len(table_of_contents_new):
break
subtitle, word_count = table_of_contents_new[content_index]
prompt = config.small_title_prompt
print(table_of_contents_new[1][0])
if content_index == 0 and table_of_contents_new[1][0][:2] == "@@" and subtitle[:2] == "@@":
subtitle, prompt, word_count = subtitle[2:], config.first_title_prompt, 800
if content_index == len(table_of_contents_new) - 1 and subtitle[:2] == "@@":
subtitle, prompt, word_count = subtitle[2:], config.first_title_prompt, 800
print("请求的所有参数",
content_index,
title,
subtitle,
prompt,
word_count)
paper_content = {
"task_type": "paper_content",
"uuid": uuid,
"main_parameter": [
content_index,
title,
mulu,
subtitle,
prompt,
word_count
]
}
small_task_list.append(paper_content)
content_index += 1
thanks_task = {
"task_type": "thanks_task",
"uuid": uuid,
"main_parameter": [
title,
config.thank_prompt
]
}
references_task = {
"task_type": "references_task",
"uuid": uuid,
"main_parameter": [
title,
mulu,
config.references_prompt
]
}
small_task_list.append(thanks_task)
small_task_list.append(references_task)
res = {
"num_small_task": len(small_task_list),
"tasking_num": 0,
"标题": title,
"目录": mulu,
"开题报告": "",
"任务书": "",
"中文摘要": "",
"英文摘要": "",
"中文关键词": "",
"英文关键词": "",
"正文": "",
"致谢": "",
"参考文献": "",
"table_of_contents": [""] * len(table_of_contents_new)
}
for small_task in small_task_list:
result, task_type = small_title_tesk(small_task)
if task_type == "kaitibaogao":
res["开题报告"] = result
elif task_type == "chat_abstract":
for i in result:
res[i] = result[i]
elif task_type == "paper_content":
content_index = small_task["main_parameter"][0]
res["table_of_contents"][content_index] = result
elif task_type == "thanks_task":
res["致谢"] = result
elif task_type == "references_task":
res["参考文献"] = result
return res
def classify(): # 调用模型,设置最大batch_size
while True:
if redis_.llen(redis_title) == 0: # 若队列中没有元素就继续获取
time.sleep(3)
continue
query = redis_.lpop(redis_title).decode('UTF-8') # 获取query的text
query = json.loads(query)
uuid = query['id']
texts = query["text"]
response = main_prrcess(texts)
print("res", response)
return_text = str({"texts": response, "probabilities": None, "status_code": 200})
uuid_path = os.path.join(config.project_data_txt_path, uuid)
os.makedirs(uuid_path)
paper_content_path = os.path.join(uuid_path, "paper_content.json")
print(uuid)
with open(paper_content_path, "w") as outfile:
json.dump(response, outfile)
save_word_paper = os.path.join(uuid_path, "paper.docx")
save_word_paper_start = os.path.join(uuid_path, "paper_start.docx")
os.system(
"java -Dfile.encoding=UTF-8 -jar '/home/majiahui/projert/chatglm/aiXieZuoPro.jar' '{}' '{}' '{}'".format(
paper_content_path,
save_word_paper,
save_word_paper_start))
redis_.set(uuid, return_text, 28800)
@app.route("/predict", methods=["POST"])
def handle_query():
print(request.remote_addr)
texts = request.json["texts"]
if texts is None:
return_text = {"texts": "输入了空值", "probabilities": None, "status_code": 402}
return jsonify(return_text)
id_ = str(uuid.uuid1()) # 为query生成唯一标识
d = {'id': id_, 'text': texts} # 绑定文本和query id
redis_.rpush(redis_title, json.dumps(d)) # 加入redis
while True:
result = redis_.get(id_) # 获取该query的模型结果
if result is not None:
result_text = {'code': "200", 'data': result.decode('UTF-8')}
break
else:
time.sleep(1)
return jsonify(result_text) # 返回结果
t = Thread(target=classify)
t.start()
if __name__ == "__main__":
fh = logging.FileHandler(mode='a', encoding='utf-8', filename='chitchat.log')
logging.basicConfig(
handlers=[fh],
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
)
app.run(host="0.0.0.0", port=15000, threaded=True, debug=False)