import concurrent.futures import requests import socket def dialog_line_parse(url, text): """ 将数据输入模型进行分析并输出结果 :param url: 模型url :param text: 进入模型的数据 :return: 模型返回结果 """ response = requests.post( url, json=text, timeout=1000 ) if response.status_code == 200: return response.json() else: # logger.error( # "【{}】 Failed to get a proper response from remote " # "server. Status Code: {}. Response: {}" # "".format(url, response.status_code, response.text) # ) print("【{}】 Failed to get a proper response from remote " "server. Status Code: {}. Response: {}" "".format(url, response.status_code, response.text)) print(text) return [] text = "User:生成目录#\n问:为论文题目《基于跨文化意识培养的中职英语词汇教学模式及策略行动研究》生成目录,要求只有一级标题和二级标题,一级标题使用中文数字 例如一、xxx;二级标题使用阿拉伯数字 例如1.1 xxx;一级标题不少于7个;每个一级标题至少包含3个二级标题\n答:\n\nAssistant:" # 获取用户query中的文本 例如"I love you" nums = 10 nums = int(nums) url = "http://192.168.31.74:18001/predict" input_data = [] for i in range(nums): input_data.append([url, {"texts": text}]) with concurrent.futures.ThreadPoolExecutor() as executor: # 使用submit方法将任务提交给线程池,并获取Future对象 futures = [executor.submit(dialog_line_parse, i[0], i[1]) for i in input_data] # 使用as_completed获取已完成的任务,并获取返回值 results = [future.result() for future in concurrent.futures.as_completed(futures)] print(results)