import os os.environ["CUDA_VISIBLE_DEVICES"] = "2" from transformers import pipeline import redis import uuid import json from threading import Thread from vllm import LLM, SamplingParams import time import threading import time import concurrent.futures import requests import socket pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=5, password="zhicheng123*") redis_ = redis.Redis(connection_pool=pool, decode_responses=True) db_key_query = 'query' db_key_query_articles_directory = 'query_articles_directory' db_key_result = 'result' batch_size = 512 # sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="", max_tokens=4096) sampling_params = SamplingParams(temperature=0.95, top_p=0.7,stop="", max_tokens=4096) models_path = "/home/majiahui/project/models-llm/openbuddy-mistral-7b-v13.1-finetune-90000" llm = LLM(model=models_path, tokenizer_mode="slow") def classify(batch_size): # 调用模型,设置最大batch_size while True: texts = [] query_ids = [] if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 time.sleep(2) continue for i in range(min(redis_.llen(db_key_query), batch_size)): query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text query_ids.append(json.loads(query)['id']) texts.append(json.loads(query)['text']) # 拼接若干text 为batch outputs = llm.generate(texts, sampling_params) # 调用模型 generated_text_list = [""] * len(texts) print("outputs", len(outputs)) for i, output in enumerate(outputs): index = output.request_id generated_text = output.outputs[0].text generated_text_list[int(index)] = generated_text for (id_, output) in zip(query_ids, generated_text_list): res = output redis_.set(id_, json.dumps(res)) # 将模型结果送回队列 if __name__ == '__main__': t = Thread(target=classify, args=(batch_size,)) t.start()