
9 changed files with 310 additions and 49 deletions
@ -0,0 +1,51 @@ |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import uuid |
|||
import json |
|||
import time |
|||
import socket |
|||
|
|||
def get_host_ip(): |
|||
""" |
|||
查询本机ip地址 |
|||
:return: ip |
|||
""" |
|||
try: |
|||
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) |
|||
s.connect(('8.8.8.8', 80)) |
|||
ip = s.getsockname()[0] |
|||
finally: |
|||
s.close() |
|||
|
|||
return ip |
|||
|
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=11, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_query_articles_directory = 'query_articles_directory' |
|||
db_key_result = 'result' |
|||
batch_size = 32 |
|||
|
|||
|
|||
@app.route("/predict", methods=["POST"]) |
|||
def handle_query(): |
|||
text = request.json["texts"] # 获取用户query中的文本 例如"I love you" |
|||
id_ = str(uuid.uuid1()) # 为query生成唯一标识 |
|||
d = {'id': id_, 'text': text} # 绑定文本和query id |
|||
redis_.rpush(db_key_query, json.dumps(d)) # 加入redis |
|||
while True: |
|||
result = redis_.get(id_) # 获取该query的模型结果 |
|||
if result is not None: |
|||
redis_.delete(id_) |
|||
result_text = {'code': "200", 'data': json.loads(result)} |
|||
break |
|||
time.sleep(1) |
|||
|
|||
return jsonify(result_text) # 返回结果 |
|||
|
|||
if __name__ == "__main__": |
|||
app.run(debug=False, host='0.0.0.0', port=18001) |
@ -0,0 +1,21 @@ |
|||
# 并行工作线程数 |
|||
workers = 8 |
|||
# 监听内网端口5000【按需要更改】 |
|||
bind = '0.0.0.0:12000' |
|||
|
|||
loglevel = 'debug' |
|||
|
|||
worker_class = "gevent" |
|||
# 设置守护进程【关闭连接时,程序仍在运行】 |
|||
daemon = True |
|||
# 设置超时时间120s,默认为30s。按自己的需求进行设置 |
|||
timeout = 120 |
|||
# 设置访问日志和错误信息日志路径 |
|||
accesslog = './logs/acess.log' |
|||
errorlog = './logs/error.log' |
|||
# access_log_format = '%(h) - %(t)s - %(u)s - %(s)s %(H)s' |
|||
# errorlog = '-' # 记录到标准输出 |
|||
|
|||
|
|||
# 设置最大并发量 |
|||
worker_connections = 20000 |
@ -0,0 +1,57 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "3" |
|||
from transformers import pipeline |
|||
import redis |
|||
import uuid |
|||
import json |
|||
from threading import Thread |
|||
from vllm import LLM, SamplingParams |
|||
import time |
|||
import threading |
|||
import time |
|||
import concurrent.futures |
|||
import requests |
|||
import socket |
|||
|
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=11, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_query_articles_directory = 'query_articles_directory' |
|||
db_key_result = 'result' |
|||
batch_size = 512 |
|||
|
|||
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>", max_tokens=4096) |
|||
models_path = "/home/majiahui/project/models-llm/openbuddy-llama-7b-finetune" |
|||
llm = LLM(model=models_path, tokenizer_mode="slow") |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text |
|||
query_ids.append(json.loads(query)['id']) |
|||
texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
outputs = llm.generate(texts, sampling_params) # 调用模型 |
|||
|
|||
generated_text_list = [""] * len(texts) |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
generated_text = output.outputs[0].text |
|||
generated_text_list[int(index)] = generated_text |
|||
|
|||
|
|||
for (id_, output) in zip(query_ids, generated_text_list): |
|||
res = output |
|||
redis_.set(id_, json.dumps(res)) # 将模型结果送回队列 |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1 @@ |
|||
gunicorn flask_predict:app -c gunicorn_config.py |
@ -0,0 +1 @@ |
|||
nohup python mistral_model_predict_vllm.py > mistral_model_predict_vllm_logs.file 2>&1 & |
@ -0,0 +1,47 @@ |
|||
import concurrent.futures |
|||
import requests |
|||
import socket |
|||
|
|||
|
|||
def dialog_line_parse(url, text): |
|||
""" |
|||
将数据输入模型进行分析并输出结果 |
|||
:param url: 模型url |
|||
:param text: 进入模型的数据 |
|||
:return: 模型返回结果 |
|||
""" |
|||
|
|||
response = requests.post( |
|||
url, |
|||
json=text, |
|||
timeout=1000 |
|||
) |
|||
if response.status_code == 200: |
|||
return response.json() |
|||
else: |
|||
# logger.error( |
|||
# "【{}】 Failed to get a proper response from remote " |
|||
# "server. Status Code: {}. Response: {}" |
|||
# "".format(url, response.status_code, response.text) |
|||
# ) |
|||
print("【{}】 Failed to get a proper response from remote " |
|||
"server. Status Code: {}. Response: {}" |
|||
"".format(url, response.status_code, response.text)) |
|||
print(text) |
|||
return [] |
|||
|
|||
nums = 1000 |
|||
url = "http://192.168.31.74:18001/predict" |
|||
|
|||
input_data = [] |
|||
for i in range(nums): |
|||
input_data.append([url, {"texts": "User:你好\nAssistant:"}]) |
|||
|
|||
with concurrent.futures.ThreadPoolExecutor() as executor: |
|||
# 使用submit方法将任务提交给线程池,并获取Future对象 |
|||
futures = [executor.submit(dialog_line_parse, i[0], i[1]) for i in input_data] |
|||
|
|||
# 使用as_completed获取已完成的任务,并获取返回值 |
|||
results = [future.result() for future in concurrent.futures.as_completed(futures)] |
|||
|
|||
print(results) |
@ -0,0 +1,76 @@ |
|||
import threading |
|||
import requests |
|||
import time |
|||
|
|||
|
|||
# 用于记录成功和失败请求的全局变量 |
|||
success_count = 0 |
|||
failure_count = 0 |
|||
lock = threading.Lock() |
|||
|
|||
|
|||
def dialog_line_parse(url, text): |
|||
""" |
|||
将数据输入模型进行分析并输出结果 |
|||
:param url: 模型url |
|||
:param text: 进入模型的数据 |
|||
:return: 模型返回结果 |
|||
""" |
|||
|
|||
response = requests.post( |
|||
url, |
|||
json=text, |
|||
timeout=1000 |
|||
) |
|||
if response.status_code == 200: |
|||
return response.json() |
|||
else: |
|||
# logger.error( |
|||
# "【{}】 Failed to get a proper response from remote " |
|||
# "server. Status Code: {}. Response: {}" |
|||
# "".format(url, response.status_code, response.text) |
|||
# ) |
|||
print("【{}】 Failed to get a proper response from remote " |
|||
"server. Status Code: {}. Response: {}" |
|||
"".format(url, response.status_code, response.text)) |
|||
print(text) |
|||
return [] |
|||
|
|||
|
|||
# 定义一个函数来执行 HTTP 请求 |
|||
def make_request(url): |
|||
global success_count, failure_count |
|||
|
|||
try: |
|||
a = dialog_line_parse(url, {"texts": "User:你好\nAssistant:"})['data'] |
|||
print(a) |
|||
with lock: |
|||
success_count += 1 |
|||
except: |
|||
with lock: |
|||
failure_count += 1 |
|||
|
|||
# 要并发请求的 URL 列表 |
|||
urls = [ |
|||
'http://192.168.31.74:18001/predict', |
|||
# 可以添加更多的 URL |
|||
] * 30 |
|||
|
|||
|
|||
# 创建一个线程列表 |
|||
threads = [] |
|||
|
|||
# 创建并启动线程 |
|||
start= time.time() |
|||
for url in urls: |
|||
thread = threading.Thread(target=make_request, args=(url,)) |
|||
thread.start() |
|||
threads.append(thread) |
|||
|
|||
# 等待所有线程完成 |
|||
for thread in threads: |
|||
thread.join() |
|||
end = time.time() |
|||
print(end-start) |
|||
print(f"Successful requests: {success_count}") |
|||
print(f"Failed requests: {failure_count}") |
@ -0,0 +1,51 @@ |
|||
import concurrent.futures |
|||
import requests |
|||
import socket |
|||
|
|||
|
|||
def dialog_line_parse(url, text): |
|||
""" |
|||
将数据输入模型进行分析并输出结果 |
|||
:param url: 模型url |
|||
:param text: 进入模型的数据 |
|||
:return: 模型返回结果 |
|||
""" |
|||
|
|||
response = requests.post( |
|||
url, |
|||
json=text, |
|||
timeout=1000 |
|||
) |
|||
if response.status_code == 200: |
|||
return response.json() |
|||
else: |
|||
# logger.error( |
|||
# "【{}】 Failed to get a proper response from remote " |
|||
# "server. Status Code: {}. Response: {}" |
|||
# "".format(url, response.status_code, response.text) |
|||
# ) |
|||
print("【{}】 Failed to get a proper response from remote " |
|||
"server. Status Code: {}. Response: {}" |
|||
"".format(url, response.status_code, response.text)) |
|||
print(text) |
|||
return [] |
|||
|
|||
|
|||
text = "User:生成目录#\n问:为论文题目《基于跨文化意识培养的中职英语词汇教学模式及策略行动研究》生成目录,要求只有一级标题和二级标题,一级标题使用中文数字 例如一、xxx;二级标题使用阿拉伯数字 例如1.1 xxx;一级标题不少于7个;每个一级标题至少包含3个二级标题\n答:\n\nAssistant:" # 获取用户query中的文本 例如"I love you" |
|||
nums = 10 |
|||
|
|||
nums = int(nums) |
|||
url = "http://192.168.31.74:18001/predict" |
|||
|
|||
input_data = [] |
|||
for i in range(nums): |
|||
input_data.append([url, {"texts": text}]) |
|||
|
|||
with concurrent.futures.ThreadPoolExecutor() as executor: |
|||
# 使用submit方法将任务提交给线程池,并获取Future对象 |
|||
futures = [executor.submit(dialog_line_parse, i[0], i[1]) for i in input_data] |
|||
|
|||
# 使用as_completed获取已完成的任务,并获取返回值 |
|||
results = [future.result() for future in concurrent.futures.as_completed(futures)] |
|||
|
|||
print(results) |
Loading…
Reference in new issue