Browse Source

增加目录请求

master
majiahui@haimaqingfan.com 2 years ago
parent
commit
af36db8062
  1. 71
      flask_batch.py

71
flask_batch.py

@ -9,6 +9,10 @@ import json
from threading import Thread
from vllm import LLM, SamplingParams
import time
import threading
import time
import concurrent.futures
import requests
app = Flask(__name__)
app.config["JSON_AS_ASCII"] = False
@ -16,13 +20,43 @@ pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
db_key_query = 'query'
db_key_query_articles_directory = 'query_articles_directory'
db_key_result = 'result'
batch_size = 32
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>", max_tokens=2048)
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>", max_tokens=4096)
models_path = "/home/majiahui/project/models-llm/openbuddy-llama-7b-finetune"
llm = LLM(model=models_path, tokenizer_mode="slow")
def dialog_line_parse(url, text):
"""
将数据输入模型进行分析并输出结果
:param url: 模型url
:param text: 进入模型的数据
:return: 模型返回结果
"""
response = requests.post(
url,
json=text,
timeout=1000
)
if response.status_code == 200:
return response.json()
else:
# logger.error(
# "【{}】 Failed to get a proper response from remote "
# "server. Status Code: {}. Response: {}"
# "".format(url, response.status_code, response.text)
# )
print("{}】 Failed to get a proper response from remote "
"server. Status Code: {}. Response: {}"
"".format(url, response.status_code, response.text))
print(text)
return []
def classify(batch_size): # 调用模型,设置最大batch_size
while True:
texts = []
@ -35,8 +69,16 @@ def classify(batch_size): # 调用模型,设置最大batch_size
query_ids.append(json.loads(query)['id'])
texts.append(json.loads(query)['text']) # 拼接若干text 为batch
outputs = llm.generate(texts, sampling_params) # 调用模型
for (id_, output) in zip(query_ids, outputs):
res = output.outputs[0].text
generated_text_list = [""] * len(texts)
for i, output in enumerate(outputs):
index = output.request_id
generated_text = output.outputs[0].text
generated_text_list[int(index)] = generated_text
for (id_, output) in zip(query_ids, generated_text_list):
res = output
redis_.set(id_, json.dumps(res)) # 将模型结果送回队列
@ -57,6 +99,29 @@ def handle_query():
return jsonify(result_text) # 返回结果
@app.route("/articles_directory", methods=["POST"])
def handle_query():
text = request.json["texts"] # 获取用户query中的文本 例如"I love you"
nums = request.json["nums"]
nums = int(nums)
url = "http://114.116.25.228:18000/predict"
input_data = []
for i in range(nums):
input_data.append([url, {"texts": text}])
with concurrent.futures.ThreadPoolExecutor() as executor:
# 使用submit方法将任务提交给线程池,并获取Future对象
futures = [executor.submit(dialog_line_parse, i[0], i[1]) for i in input_data]
# 使用as_completed获取已完成的任务,并获取返回值
results = [future.result() for future in concurrent.futures.as_completed(futures)]
return jsonify(results) # 返回结果
if __name__ == "__main__":
t = Thread(target=classify, args=(batch_size,))
t.start()

Loading…
Cancel
Save