Browse Source

解决bug: 多线程抢资源问题

master
majiahui@haimaqingfan.com 1 year ago
parent
commit
06b249f4a3
  1. 73
      mistral_model_predict_vllm.py

73
mistral_model_predict_vllm.py

@ -1,5 +1,5 @@
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from transformers import pipeline
import redis
import uuid
@ -14,20 +14,39 @@ import requests
import socket
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=5, password="zhicheng123*")
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=4, password="zhicheng123*")
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
db_key_query = 'query'
db_key_query_articles_directory = 'query_articles_directory'
db_key_querying = 'querying'
db_key_result = 'result'
batch_size = 512
batch_size = 24
# sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>", max_tokens=4096)
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,stop="</s>", max_tokens=4096)
models_path = "/home/majiahui/project/models-llm/openbuddy-mistral-7b-v13.1-finetune-90000"
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,stop="</s>", presence_penalty=1.1, max_tokens=4096)
models_path = "/home/majiahui/project/LLaMA-Factory-main/lora_openbuddy_zephyr_paper_model_190000"
llm = LLM(model=models_path, tokenizer_mode="slow")
class log:
def __init__(self):
pass
def log(*args, **kwargs):
format = '%Y/%m/%d-%H:%M:%S'
format_h = '%Y-%m-%d'
value = time.localtime(int(time.time()))
dt = time.strftime(format, value)
dt_log_file = time.strftime(format_h, value)
log_file = 'log_file/access-%s' % dt_log_file + ".log"
if not os.path.exists(log_file):
with open(os.path.join(log_file), 'w', encoding='utf-8') as f:
print(dt, *args, file=f, **kwargs)
else:
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f:
print(dt, *args, file=f, **kwargs)
def classify(batch_size): # 调用模型,设置最大batch_size
while True:
texts = []
@ -35,10 +54,28 @@ def classify(batch_size): # 调用模型,设置最大batch_size
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
time.sleep(2)
continue
for i in range(min(redis_.llen(db_key_query), batch_size)):
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
query_ids.append(json.loads(query)['id'])
texts.append(json.loads(query)['text']) # 拼接若干text 为batch
# for i in range(min(redis_.llen(db_key_query), batch_size)):
while True:
query = redis_.lpop(db_key_query) # 获取query的text
if query == None:
break
query = query.decode('UTF-8')
data_dict_path = json.loads(query)
path = data_dict_path['path']
with open(path, encoding='utf8') as f1:
# 加载文件的对象
data_dict = json.load(f1)
# query_ids.append(json.loads(query)['id'])
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch
query_id = data_dict['id']
text = data_dict["text"]
query_ids.append(query_id)
texts.append(text)
if len(texts) == batch_size:
break
outputs = llm.generate(texts, sampling_params) # 调用模型
generated_text_list = [""] * len(texts)
@ -48,10 +85,20 @@ def classify(batch_size): # 调用模型,设置最大batch_size
generated_text = output.outputs[0].text
generated_text_list[int(index)] = generated_text
for (id_, output) in zip(query_ids, generated_text_list):
res = output
redis_.set(id_, json.dumps(res)) # 将模型结果送回队列
return_text = {"texts": output, "probabilities": None, "status_code": 200}
load_result_path = "./new_data_logs/{}.json".format(id_)
with open(load_result_path, 'w', encoding='utf8') as f2:
# ensure_ascii=False才能输入中文,否则是Unicode字符
# indent=2 JSON数据的缩进,美观
json.dump(return_text, f2, ensure_ascii=False, indent=4)
redis_.set(id_, load_result_path, 86400)
# redis_.set(id_, load_result_path, 30)
redis_.srem(db_key_querying, id_)
log.log('start at',
'query_id:{},load_result_path:{},return_text:{}'.format(
id_, load_result_path, return_text))
if __name__ == '__main__':

Loading…
Cancel
Save