You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
206 lines
7.8 KiB
206 lines
7.8 KiB
import os
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
|
|
import argparse
|
|
from typing import List, Tuple
|
|
from threading import Thread
|
|
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams
|
|
# from vllm.utils import FlexibleArgumentParser
|
|
from flask import Flask, jsonify
|
|
from flask import request
|
|
import redis
|
|
import time
|
|
import json
|
|
|
|
# http接口服务
|
|
# app = FastAPI()
|
|
app = Flask(__name__)
|
|
app.config["JSON_AS_ASCII"] = False
|
|
|
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*")
|
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
|
|
|
|
db_key_query = 'query'
|
|
db_key_querying = 'querying'
|
|
db_key_result = 'result'
|
|
batch_size = 15
|
|
|
|
class log:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def log(*args, **kwargs):
|
|
format = '%Y/%m/%d-%H:%M:%S'
|
|
format_h = '%Y-%m-%d'
|
|
value = time.localtime(int(time.time()))
|
|
dt = time.strftime(format, value)
|
|
dt_log_file = time.strftime(format_h, value)
|
|
log_file = 'log_file/access-%s' % dt_log_file + ".log"
|
|
if not os.path.exists(log_file):
|
|
with open(os.path.join(log_file), 'w', encoding='utf-8') as f:
|
|
print(dt, *args, file=f, **kwargs)
|
|
else:
|
|
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f:
|
|
print(dt, *args, file=f, **kwargs)
|
|
|
|
|
|
def initialize_engine() -> LLMEngine:
|
|
"""Initialize the LLMEngine from the command line arguments."""
|
|
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat"
|
|
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper"
|
|
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2"
|
|
# model_dir = "/home/majiahui/project/models-llm/Qwen2.5-7B-Instruct-1M"
|
|
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b-v23.1-200k"
|
|
# model_dir = "/home/majiahui/project/models-llm/qwen2_5_7B_train_11_prompt_4_gpt_xiaobiaot_real_paper_1"
|
|
model_dir = "/home/majiahui/project/models-llm/qwen2_5_7B_train_11_prompt_5_gpt_xiaobiaot_real_paper_1"
|
|
args = EngineArgs(model_dir)
|
|
args.max_num_seqs = 16 # batch最大20条样本
|
|
args.gpu_memory_utilization = 0.8
|
|
args.max_model_len=8192
|
|
# 加载模型
|
|
return LLMEngine.from_engine_args(args)
|
|
|
|
engine = initialize_engine()
|
|
|
|
|
|
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]:
|
|
"""Create a list of test prompts with their sampling parameters."""
|
|
|
|
return_list = []
|
|
|
|
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list):
|
|
return_list.append((i, j, k))
|
|
return return_list
|
|
|
|
|
|
def process_requests(engine: LLMEngine,
|
|
test_prompts: List[Tuple[str, str, SamplingParams]]):
|
|
"""Continuously process a list of prompts and handle the outputs."""
|
|
|
|
return_list = []
|
|
while test_prompts or engine.has_unfinished_requests():
|
|
if test_prompts:
|
|
prompt, query_id, sampling_params = test_prompts.pop(0)
|
|
engine.add_request(str(query_id), prompt, sampling_params)
|
|
|
|
request_outputs: List[RequestOutput] = engine.step()
|
|
|
|
for request_output in request_outputs:
|
|
if request_output.finished:
|
|
return_list.append(request_output)
|
|
return return_list
|
|
|
|
|
|
def main(prompt_texts, query_ids, sampling_params_list):
|
|
"""Main function that sets up and runs the prompt processing."""
|
|
|
|
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list)
|
|
return process_requests(engine, test_prompts)
|
|
|
|
|
|
# chat对话接口
|
|
# @app.route("/predict/", methods=["POST"])
|
|
# def chat():
|
|
# # request = request.json()
|
|
# # query = request.get('query', None)
|
|
# # history = request.get('history', [])
|
|
# # system = request.get('system', 'You are a helpful assistant.')
|
|
# # stream = request.get("stream", False)
|
|
# # user_stop_words = request.get("user_stop_words",
|
|
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止
|
|
#
|
|
# query = request.json['query']
|
|
#
|
|
#
|
|
# # 构造prompt
|
|
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system)
|
|
#
|
|
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n"
|
|
#
|
|
#
|
|
# return_output = main(prompt_text, sampling_params)
|
|
# return_info = {
|
|
# "request_id": return_output.request_id,
|
|
# "text": return_output.outputs[0].text
|
|
# }
|
|
#
|
|
# return jsonify(return_info)
|
|
|
|
def classify(batch_size): # 调用模型,设置最大batch_size
|
|
while True:
|
|
texts = []
|
|
query_ids = []
|
|
sampling_params_list = []
|
|
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
|
|
time.sleep(2)
|
|
continue
|
|
|
|
# for i in range(min(redis_.llen(db_key_query), batch_size)):
|
|
while True:
|
|
query = redis_.lpop(db_key_query) # 获取query的text
|
|
if query == None:
|
|
break
|
|
|
|
query = query.decode('UTF-8')
|
|
data_dict_path = json.loads(query)
|
|
|
|
path = data_dict_path['path']
|
|
with open(path, encoding='utf8') as f1:
|
|
# 加载文件的对象
|
|
data_dict = json.load(f1)
|
|
# query_ids.append(json.loads(query)['id'])
|
|
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch
|
|
query_id = data_dict['id']
|
|
print("query_id", query_id)
|
|
text = data_dict["text"]
|
|
model = data_dict["model"]
|
|
top_p = data_dict["top_p"]
|
|
temperature = data_dict["temperature"]
|
|
presence_penalty = 1.1
|
|
max_tokens = 8192
|
|
query_ids.append(query_id)
|
|
texts.append(text)
|
|
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192)
|
|
sampling_params_list.append(SamplingParams(
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
stop="<|im_end|>",
|
|
presence_penalty=presence_penalty,
|
|
max_tokens=max_tokens
|
|
))
|
|
if len(texts) == batch_size:
|
|
break
|
|
|
|
print("texts", len(texts))
|
|
print("query_ids", len(query_ids))
|
|
print("sampling_params_list", len(sampling_params_list))
|
|
outputs = main(texts, query_ids, sampling_params_list)
|
|
|
|
print("预测完成")
|
|
generated_text_dict = {}
|
|
print("outputs", len(outputs))
|
|
for i, output in enumerate(outputs):
|
|
index = output.request_id
|
|
print(index)
|
|
generated_text = output.outputs[0].text
|
|
generated_text_dict[index] = generated_text
|
|
|
|
print(generated_text_dict)
|
|
for id_, output in generated_text_dict.items():
|
|
|
|
return_text = {"texts": output, "probabilities": None, "status_code": 200}
|
|
load_result_path = "./new_data_logs/{}.json".format(id_)
|
|
with open(load_result_path, 'w', encoding='utf8') as f2:
|
|
# ensure_ascii=False才能输入中文,否则是Unicode字符
|
|
# indent=2 JSON数据的缩进,美观
|
|
json.dump(return_text, f2, ensure_ascii=False, indent=4)
|
|
redis_.set(id_, load_result_path, 86400)
|
|
# redis_.set(id_, load_result_path, 30)
|
|
redis_.srem(db_key_querying, id_)
|
|
log.log('start at',
|
|
'query_id:{},load_result_path:{},return_text:{}'.format(
|
|
id_, load_result_path, return_text))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
t = Thread(target=classify, args=(batch_size,))
|
|
t.start()
|
|
|