
25 changed files with 2186 additions and 132 deletions
@ -0,0 +1,106 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "1" |
|||
from transformers import pipeline |
|||
import redis |
|||
import uuid |
|||
import json |
|||
from threading import Thread |
|||
from vllm import LLM, SamplingParams |
|||
import time |
|||
import threading |
|||
import time |
|||
import concurrent.futures |
|||
import requests |
|||
import socket |
|||
|
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 32 |
|||
|
|||
# sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>", max_tokens=4096) |
|||
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,stop="</s>", presence_penalty=1.1, max_tokens=8192) |
|||
models_path = "/home/majiahui/project/LLaMA-Factory-main/lora_openbuddy_mistral_7b_v20_3-32k_paper_model_10" |
|||
llm = LLM(model=models_path, tokenizer_mode="slow", max_model_len=8192) |
|||
|
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
text = data_dict["text"] |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
if len(texts) == batch_size: |
|||
break |
|||
outputs = llm.generate(texts, sampling_params) # 调用模型 |
|||
|
|||
generated_text_list = [""] * len(texts) |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
generated_text = output.outputs[0].text |
|||
generated_text_list[int(index)] = generated_text |
|||
|
|||
for (id_, output) in zip(query_ids, generated_text_list): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,106 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "4" |
|||
from transformers import pipeline |
|||
import redis |
|||
import uuid |
|||
import json |
|||
from threading import Thread |
|||
from vllm import LLM, SamplingParams |
|||
import time |
|||
import threading |
|||
import time |
|||
import concurrent.futures |
|||
import requests |
|||
import socket |
|||
|
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=4, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 24 |
|||
|
|||
# sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>", max_tokens=4096) |
|||
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,stop="</s>", presence_penalty=1.1, max_tokens=4096) |
|||
models_path = "/home/majiahui/project/LLaMA-Factory-main/lora_openbuddy_zephyr_paper_model_190000" |
|||
llm = LLM(model=models_path, tokenizer_mode="slow") |
|||
|
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
text = data_dict["text"] |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
if len(texts) == batch_size: |
|||
break |
|||
outputs = llm.generate(texts, sampling_params) # 调用模型 |
|||
|
|||
generated_text_list = [""] * len(texts) |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
generated_text = output.outputs[0].text |
|||
generated_text_list[int(index)] = generated_text |
|||
|
|||
for (id_, output) in zip(query_ids, generated_text_list): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 300) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,202 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "1" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 15 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" |
|||
model_dir = "/home/majiahui/project/models-llm/openbuddy-llama3.1-8b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_1" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.8 |
|||
args.max_model_len=8192 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): |
|||
return_list.append((i, j, k)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params_list): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
sampling_params_list = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
print("query_id", query_id) |
|||
text = data_dict["text"] |
|||
model = data_dict["model"] |
|||
top_p = data_dict["top_p"] |
|||
temperature = data_dict["temperature"] |
|||
presence_penalty = 0.8 |
|||
max_tokens = 8192 |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) |
|||
sampling_params_list.append(SamplingParams( |
|||
temperature=temperature, |
|||
top_p=top_p, |
|||
stop="<|end|>", |
|||
presence_penalty=presence_penalty, |
|||
max_tokens=max_tokens |
|||
)) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
print("texts", len(texts)) |
|||
print("query_ids", len(query_ids)) |
|||
print("sampling_params_list", len(sampling_params_list)) |
|||
outputs = main(texts, query_ids, sampling_params_list) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
print(index) |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
print(generated_text_dict) |
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,202 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "2" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 15 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" |
|||
model_dir = "/home/majiahui/project/models-llm/openbuddy-llama3.1-8b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_1" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.8 |
|||
args.max_model_len=8192 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): |
|||
return_list.append((i, j, k)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params_list): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
sampling_params_list = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
print("query_id", query_id) |
|||
text = data_dict["text"] |
|||
model = data_dict["model"] |
|||
top_p = data_dict["top_p"] |
|||
temperature = data_dict["temperature"] |
|||
presence_penalty = 0.8 |
|||
max_tokens = 8192 |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) |
|||
sampling_params_list.append(SamplingParams( |
|||
temperature=temperature, |
|||
top_p=top_p, |
|||
stop="<|end|>", |
|||
presence_penalty=presence_penalty, |
|||
max_tokens=max_tokens |
|||
)) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
print("texts", len(texts)) |
|||
print("query_ids", len(query_ids)) |
|||
print("sampling_params_list", len(sampling_params_list)) |
|||
outputs = main(texts, query_ids, sampling_params_list) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
print(index) |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
print(generated_text_dict) |
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,202 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "3" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 15 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" |
|||
model_dir = "/home/majiahui/project/models-llm/openbuddy-llama3.1-8b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_1" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.8 |
|||
args.max_model_len=8192 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): |
|||
return_list.append((i, j, k)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params_list): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
sampling_params_list = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
print("query_id", query_id) |
|||
text = data_dict["text"] |
|||
model = data_dict["model"] |
|||
top_p = data_dict["top_p"] |
|||
temperature = data_dict["temperature"] |
|||
presence_penalty = 0.8 |
|||
max_tokens = 8192 |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) |
|||
sampling_params_list.append(SamplingParams( |
|||
temperature=temperature, |
|||
top_p=top_p, |
|||
stop="<|end|>", |
|||
presence_penalty=presence_penalty, |
|||
max_tokens=max_tokens |
|||
)) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
print("texts", len(texts)) |
|||
print("query_ids", len(query_ids)) |
|||
print("sampling_params_list", len(sampling_params_list)) |
|||
outputs = main(texts, query_ids, sampling_params_list) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
print(index) |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
print(generated_text_dict) |
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,202 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "1" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 15 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" |
|||
model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.8 |
|||
args.max_model_len=8192 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): |
|||
return_list.append((i, j, k)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params_list): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
sampling_params_list = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
print("query_id", query_id) |
|||
text = data_dict["text"] |
|||
model = data_dict["model"] |
|||
top_p = data_dict["top_p"] |
|||
temperature = data_dict["temperature"] |
|||
presence_penalty = 0.8 |
|||
max_tokens = 8192 |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) |
|||
sampling_params_list.append(SamplingParams( |
|||
temperature=temperature, |
|||
top_p=top_p, |
|||
stop="<|end|>", |
|||
presence_penalty=presence_penalty, |
|||
max_tokens=max_tokens |
|||
)) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
print("texts", len(texts)) |
|||
print("query_ids", len(query_ids)) |
|||
print("sampling_params_list", len(sampling_params_list)) |
|||
outputs = main(texts, query_ids, sampling_params_list) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
print(index) |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
print(generated_text_dict) |
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,202 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "2" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 15 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" |
|||
model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.8 |
|||
args.max_model_len=8192 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): |
|||
return_list.append((i, j, k)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params_list): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
sampling_params_list = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
print("query_id", query_id) |
|||
text = data_dict["text"] |
|||
model = data_dict["model"] |
|||
top_p = data_dict["top_p"] |
|||
temperature = data_dict["temperature"] |
|||
presence_penalty = 0.8 |
|||
max_tokens = 8192 |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) |
|||
sampling_params_list.append(SamplingParams( |
|||
temperature=temperature, |
|||
top_p=top_p, |
|||
stop="<|end|>", |
|||
presence_penalty=presence_penalty, |
|||
max_tokens=max_tokens |
|||
)) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
print("texts", len(texts)) |
|||
print("query_ids", len(query_ids)) |
|||
print("sampling_params_list", len(sampling_params_list)) |
|||
outputs = main(texts, query_ids, sampling_params_list) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
print(index) |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
print(generated_text_dict) |
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,202 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "3" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 15 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" |
|||
model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.8 |
|||
args.max_model_len=8192 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): |
|||
return_list.append((i, j, k)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params_list): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
sampling_params_list = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
print("query_id", query_id) |
|||
text = data_dict["text"] |
|||
model = data_dict["model"] |
|||
top_p = data_dict["top_p"] |
|||
temperature = data_dict["temperature"] |
|||
presence_penalty = 0.8 |
|||
max_tokens = 8192 |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) |
|||
sampling_params_list.append(SamplingParams( |
|||
temperature=temperature, |
|||
top_p=top_p, |
|||
stop="<|end|>", |
|||
presence_penalty=presence_penalty, |
|||
max_tokens=max_tokens |
|||
)) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
print("texts", len(texts)) |
|||
print("query_ids", len(query_ids)) |
|||
print("sampling_params_list", len(sampling_params_list)) |
|||
outputs = main(texts, query_ids, sampling_params_list) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
print(index) |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
print(generated_text_dict) |
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,205 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "1" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 15 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen2.5-7B-Instruct-1M" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b-v23.1-200k" |
|||
model_dir = "/home/majiahui/project/models-llm/qwen2_5_7B_train_11_prompt_4_gpt_xiaobiaot_real_paper_1" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.8 |
|||
args.max_model_len=8192 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): |
|||
return_list.append((i, j, k)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params_list): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
sampling_params_list = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
print("query_id", query_id) |
|||
text = data_dict["text"] |
|||
model = data_dict["model"] |
|||
top_p = data_dict["top_p"] |
|||
temperature = data_dict["temperature"] |
|||
presence_penalty = 1.1 |
|||
max_tokens = 8192 |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) |
|||
sampling_params_list.append(SamplingParams( |
|||
temperature=temperature, |
|||
top_p=top_p, |
|||
stop="<|end|>", |
|||
presence_penalty=presence_penalty, |
|||
max_tokens=max_tokens |
|||
)) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
print("texts", len(texts)) |
|||
print("query_ids", len(query_ids)) |
|||
print("sampling_params_list", len(sampling_params_list)) |
|||
outputs = main(texts, query_ids, sampling_params_list) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
print(index) |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
print(generated_text_dict) |
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,205 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "2" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 15 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen2.5-7B-Instruct-1M" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b-v23.1-200k" |
|||
model_dir = "/home/majiahui/project/models-llm/qwen2_5_7B_train_11_prompt_4_gpt_xiaobiaot_real_paper_1" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.8 |
|||
args.max_model_len=8192 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): |
|||
return_list.append((i, j, k)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params_list): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
sampling_params_list = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
print("query_id", query_id) |
|||
text = data_dict["text"] |
|||
model = data_dict["model"] |
|||
top_p = data_dict["top_p"] |
|||
temperature = data_dict["temperature"] |
|||
presence_penalty = 1.1 |
|||
max_tokens = 8192 |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) |
|||
sampling_params_list.append(SamplingParams( |
|||
temperature=temperature, |
|||
top_p=top_p, |
|||
stop="<|end|>", |
|||
presence_penalty=presence_penalty, |
|||
max_tokens=max_tokens |
|||
)) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
print("texts", len(texts)) |
|||
print("query_ids", len(query_ids)) |
|||
print("sampling_params_list", len(sampling_params_list)) |
|||
outputs = main(texts, query_ids, sampling_params_list) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
print(index) |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
print(generated_text_dict) |
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1,205 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "3" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 15 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen2.5-7B-Instruct-1M" |
|||
# model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b-v23.1-200k" |
|||
model_dir = "/home/majiahui/project/models-llm/qwen2_5_7B_train_11_prompt_4_gpt_xiaobiaot_real_paper_1" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.8 |
|||
args.max_model_len=8192 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): |
|||
return_list.append((i, j, k)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params_list): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
sampling_params_list = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
print("query_id", query_id) |
|||
text = data_dict["text"] |
|||
model = data_dict["model"] |
|||
top_p = data_dict["top_p"] |
|||
temperature = data_dict["temperature"] |
|||
presence_penalty = 1.1 |
|||
max_tokens = 8192 |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
# sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) |
|||
sampling_params_list.append(SamplingParams( |
|||
temperature=temperature, |
|||
top_p=top_p, |
|||
stop="<|end|>", |
|||
presence_penalty=presence_penalty, |
|||
max_tokens=max_tokens |
|||
)) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
print("texts", len(texts)) |
|||
print("query_ids", len(query_ids)) |
|||
print("sampling_params_list", len(sampling_params_list)) |
|||
outputs = main(texts, query_ids, sampling_params_list) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
print(index) |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
print(generated_text_dict) |
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -1 +1 @@ |
|||
gunicorn mistral_api:app -c gunicorn_config.py |
|||
gunicorn model_api:app -c gunicorn_config.py |
|||
|
@ -0,0 +1 @@ |
|||
nohup python mistral_model_predict_vllm_1.py > myout_mis_model_1.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python mistral_model_predict_vllm_4.py > myout_mis_model_4.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python python openbuddy_llama3_1_model_predict_vllm_1.py > myout_model_openbuddy_llama3_1_1.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python openbuddy_llama3_1_model_predict_vllm_2.py > myout_model_openbuddy_llama3_1_2.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python openbuddy_llama3_1_model_predict_vllm_3.py > myout_model_openbuddy_llama3_1_3.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python openbuddy_qwen2_5_model_predict_vllm_1.py > myout_model_openbuddy_qwen_1.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python openbuddy_qwen2_5_model_predict_vllm_2.py > myout_model_openbuddy_qwen_2.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python openbuddy_qwen2_5_model_predict_vllm_3.py > myout_model_openbuddy_qwen_3.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python qwen2_5_Instruct_model_predict_vllm_1.py > myout_model_qwen_1.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python qwen2_5_Instruct_model_predict_vllm_2.py > myout_model_qwen_2.file 2>&1 & |
@ -0,0 +1 @@ |
|||
nohup python qwen2_5_Instruct_model_predict_vllm_3.py > myout_model_qwen_3.file 2>&1 & |
Loading…
Reference in new issue