diff --git a/mistral_model_predict_vllm_1.py b/mistral_model_predict_vllm_1.py new file mode 100644 index 0000000..453a6c5 --- /dev/null +++ b/mistral_model_predict_vllm_1.py @@ -0,0 +1,106 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "1" +from transformers import pipeline +import redis +import uuid +import json +from threading import Thread +from vllm import LLM, SamplingParams +import time +import threading +import time +import concurrent.futures +import requests +import socket + + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 32 + +# sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="", max_tokens=4096) +sampling_params = SamplingParams(temperature=0.95, top_p=0.7,stop="", presence_penalty=1.1, max_tokens=8192) +models_path = "/home/majiahui/project/LLaMA-Factory-main/lora_openbuddy_mistral_7b_v20_3-32k_paper_model_10" +llm = LLM(model=models_path, tokenizer_mode="slow", max_model_len=8192) + + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + text = data_dict["text"] + query_ids.append(query_id) + texts.append(text) + if len(texts) == batch_size: + break + outputs = llm.generate(texts, sampling_params) # 调用模型 + + generated_text_list = [""] * len(texts) + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + generated_text = output.outputs[0].text + generated_text_list[int(index)] = generated_text + + for (id_, output) in zip(query_ids, generated_text_list): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/mistral_model_predict_vllm_4.py b/mistral_model_predict_vllm_4.py new file mode 100644 index 0000000..4fa7823 --- /dev/null +++ b/mistral_model_predict_vllm_4.py @@ -0,0 +1,106 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "4" +from transformers import pipeline +import redis +import uuid +import json +from threading import Thread +from vllm import LLM, SamplingParams +import time +import threading +import time +import concurrent.futures +import requests +import socket + + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=4, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 24 + +# sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="", max_tokens=4096) +sampling_params = SamplingParams(temperature=0.95, top_p=0.7,stop="", presence_penalty=1.1, max_tokens=4096) +models_path = "/home/majiahui/project/LLaMA-Factory-main/lora_openbuddy_zephyr_paper_model_190000" +llm = LLM(model=models_path, tokenizer_mode="slow") + + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + text = data_dict["text"] + query_ids.append(query_id) + texts.append(text) + if len(texts) == batch_size: + break + outputs = llm.generate(texts, sampling_params) # 调用模型 + + generated_text_list = [""] * len(texts) + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + generated_text = output.outputs[0].text + generated_text_list[int(index)] = generated_text + + for (id_, output) in zip(query_ids, generated_text_list): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 300) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/mistral_api.py b/model_api.py similarity index 93% rename from mistral_api.py rename to model_api.py index 4708308..b1f4359 100644 --- a/mistral_api.py +++ b/model_api.py @@ -53,10 +53,14 @@ def smtp_f(name): @app.route("/predict", methods=["POST"]) def predict(): - text = request.json["texts"] # 获取用户query中的文本 例如"I love you" + content = request.json["content"] # 获取用户query中的文本 例如"I love you" + model = request.json["model"] + top_p = request.json["top_p"] + temperature = request.json["temperature"] id_ = str(uuid.uuid1()) # 为query生成唯一标识 print("uuid: ", uuid) - d = {'id': id_, 'text': text} # 绑定文本和query id + d = {'id': id_, 'text': content, 'model': model, 'top_p': top_p,'temperature': temperature} # 绑定文本和query id + print(d) try: load_request_path = './request_data_logs/{}.json'.format(id_) with open(load_request_path, 'w', encoding='utf8') as f2: diff --git a/openbuddy_llama3_1_model_predict_vllm_1.py b/openbuddy_llama3_1_model_predict_vllm_1.py new file mode 100644 index 0000000..b3c85c6 --- /dev/null +++ b/openbuddy_llama3_1_model_predict_vllm_1.py @@ -0,0 +1,202 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "1" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + model_dir = "/home/majiahui/project/models-llm/openbuddy-llama3.1-8b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_1" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.8 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 0.8 + max_tokens = 8192 + query_ids.append(query_id) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/openbuddy_llama3_1_model_predict_vllm_2.py b/openbuddy_llama3_1_model_predict_vllm_2.py new file mode 100644 index 0000000..ae98c74 --- /dev/null +++ b/openbuddy_llama3_1_model_predict_vllm_2.py @@ -0,0 +1,202 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "2" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + model_dir = "/home/majiahui/project/models-llm/openbuddy-llama3.1-8b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_1" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.8 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 0.8 + max_tokens = 8192 + query_ids.append(query_id) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/openbuddy_llama3_1_model_predict_vllm_3.py b/openbuddy_llama3_1_model_predict_vllm_3.py new file mode 100644 index 0000000..ffe17fe --- /dev/null +++ b/openbuddy_llama3_1_model_predict_vllm_3.py @@ -0,0 +1,202 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "3" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + model_dir = "/home/majiahui/project/models-llm/openbuddy-llama3.1-8b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_1" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.8 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 0.8 + max_tokens = 8192 + query_ids.append(query_id) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/openbuddy_qwen2_5_model_predict_vllm_1.py b/openbuddy_qwen2_5_model_predict_vllm_1.py new file mode 100644 index 0000000..944f07b --- /dev/null +++ b/openbuddy_qwen2_5_model_predict_vllm_1.py @@ -0,0 +1,202 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "1" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.8 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 0.8 + max_tokens = 8192 + query_ids.append(query_id) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/openbuddy_qwen2_5_model_predict_vllm_2.py b/openbuddy_qwen2_5_model_predict_vllm_2.py new file mode 100644 index 0000000..465a753 --- /dev/null +++ b/openbuddy_qwen2_5_model_predict_vllm_2.py @@ -0,0 +1,202 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "2" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.8 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 0.8 + max_tokens = 8192 + query_ids.append(query_id) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/openbuddy_qwen2_5_model_predict_vllm_3.py b/openbuddy_qwen2_5_model_predict_vllm_3.py new file mode 100644 index 0000000..078c82f --- /dev/null +++ b/openbuddy_qwen2_5_model_predict_vllm_3.py @@ -0,0 +1,202 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "3" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.8 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 0.8 + max_tokens = 8192 + query_ids.append(query_id) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/qwen2_5_Instruct_model_predict_vllm_1.py b/qwen2_5_Instruct_model_predict_vllm_1.py new file mode 100644 index 0000000..5d26fbd --- /dev/null +++ b/qwen2_5_Instruct_model_predict_vllm_1.py @@ -0,0 +1,205 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "1" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" + # model_dir = "/home/majiahui/project/models-llm/Qwen2.5-7B-Instruct-1M" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b-v23.1-200k" + model_dir = "/home/majiahui/project/models-llm/qwen2_5_7B_train_11_prompt_4_gpt_xiaobiaot_real_paper_1" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.8 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 1.1 + max_tokens = 8192 + query_ids.append(query_id) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/qwen2_5_Instruct_model_predict_vllm_2.py b/qwen2_5_Instruct_model_predict_vllm_2.py new file mode 100644 index 0000000..65279a2 --- /dev/null +++ b/qwen2_5_Instruct_model_predict_vllm_2.py @@ -0,0 +1,205 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "2" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" + # model_dir = "/home/majiahui/project/models-llm/Qwen2.5-7B-Instruct-1M" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b-v23.1-200k" + model_dir = "/home/majiahui/project/models-llm/qwen2_5_7B_train_11_prompt_4_gpt_xiaobiaot_real_paper_1" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.8 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 1.1 + max_tokens = 8192 + query_ids.append(query_id) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/qwen2_5_Instruct_model_predict_vllm_3.py b/qwen2_5_Instruct_model_predict_vllm_3.py new file mode 100644 index 0000000..27a8a43 --- /dev/null +++ b/qwen2_5_Instruct_model_predict_vllm_3.py @@ -0,0 +1,205 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "3" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" + # model_dir = "/home/majiahui/project/models-llm/Qwen2.5-7B-Instruct-1M" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b-v23.1-200k" + model_dir = "/home/majiahui/project/models-llm/qwen2_5_7B_train_11_prompt_4_gpt_xiaobiaot_real_paper_1" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.8 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 1.1 + max_tokens = 8192 + query_ids.append(query_id) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/run_api_gunicorn.sh b/run_api_gunicorn.sh index 4060eb5..dc56c02 100644 --- a/run_api_gunicorn.sh +++ b/run_api_gunicorn.sh @@ -1 +1 @@ -gunicorn mistral_api:app -c gunicorn_config.py +gunicorn model_api:app -c gunicorn_config.py diff --git a/run_model_1.sh b/run_model_1.sh new file mode 100644 index 0000000..68b978b --- /dev/null +++ b/run_model_1.sh @@ -0,0 +1 @@ +nohup python mistral_model_predict_vllm_1.py > myout_mis_model_1.file 2>&1 & diff --git a/run_model_4.sh b/run_model_4.sh new file mode 100644 index 0000000..3a30332 --- /dev/null +++ b/run_model_4.sh @@ -0,0 +1 @@ +nohup python mistral_model_predict_vllm_4.py > myout_mis_model_4.file 2>&1 & diff --git a/run_model_openbuddy_llama3_1_1.sh b/run_model_openbuddy_llama3_1_1.sh new file mode 100644 index 0000000..9bbc9aa --- /dev/null +++ b/run_model_openbuddy_llama3_1_1.sh @@ -0,0 +1 @@ +nohup python python openbuddy_llama3_1_model_predict_vllm_1.py > myout_model_openbuddy_llama3_1_1.file 2>&1 & diff --git a/run_model_openbuddy_llama3_1_2.sh b/run_model_openbuddy_llama3_1_2.sh new file mode 100644 index 0000000..bc2c523 --- /dev/null +++ b/run_model_openbuddy_llama3_1_2.sh @@ -0,0 +1 @@ +nohup python openbuddy_llama3_1_model_predict_vllm_2.py > myout_model_openbuddy_llama3_1_2.file 2>&1 & \ No newline at end of file diff --git a/run_model_openbuddy_llama3_1_3.sh b/run_model_openbuddy_llama3_1_3.sh new file mode 100644 index 0000000..f334527 --- /dev/null +++ b/run_model_openbuddy_llama3_1_3.sh @@ -0,0 +1 @@ +nohup python openbuddy_llama3_1_model_predict_vllm_3.py > myout_model_openbuddy_llama3_1_3.file 2>&1 & \ No newline at end of file diff --git a/run_model_openbuddy_qwen_1.sh b/run_model_openbuddy_qwen_1.sh new file mode 100644 index 0000000..28e22cc --- /dev/null +++ b/run_model_openbuddy_qwen_1.sh @@ -0,0 +1 @@ +nohup python openbuddy_qwen2_5_model_predict_vllm_1.py > myout_model_openbuddy_qwen_1.file 2>&1 & diff --git a/run_model_openbuddy_qwen_2.sh b/run_model_openbuddy_qwen_2.sh new file mode 100644 index 0000000..459cfe4 --- /dev/null +++ b/run_model_openbuddy_qwen_2.sh @@ -0,0 +1 @@ +nohup python openbuddy_qwen2_5_model_predict_vllm_2.py > myout_model_openbuddy_qwen_2.file 2>&1 & \ No newline at end of file diff --git a/run_model_openbuddy_qwen_3.sh b/run_model_openbuddy_qwen_3.sh new file mode 100644 index 0000000..2039531 --- /dev/null +++ b/run_model_openbuddy_qwen_3.sh @@ -0,0 +1 @@ +nohup python openbuddy_qwen2_5_model_predict_vllm_3.py > myout_model_openbuddy_qwen_3.file 2>&1 & \ No newline at end of file diff --git a/run_model_qwen_Instruct1.sh b/run_model_qwen_Instruct1.sh new file mode 100644 index 0000000..37b67c5 --- /dev/null +++ b/run_model_qwen_Instruct1.sh @@ -0,0 +1 @@ +nohup python qwen2_5_Instruct_model_predict_vllm_1.py > myout_model_qwen_1.file 2>&1 & diff --git a/run_model_qwen_Instruct2.sh b/run_model_qwen_Instruct2.sh new file mode 100644 index 0000000..888c8b8 --- /dev/null +++ b/run_model_qwen_Instruct2.sh @@ -0,0 +1 @@ +nohup python qwen2_5_Instruct_model_predict_vllm_2.py > myout_model_qwen_2.file 2>&1 & \ No newline at end of file diff --git a/run_model_qwen_Instruct3.sh b/run_model_qwen_Instruct3.sh new file mode 100644 index 0000000..53a5cb2 --- /dev/null +++ b/run_model_qwen_Instruct3.sh @@ -0,0 +1 @@ +nohup python qwen2_5_Instruct_model_predict_vllm_3.py > myout_model_qwen_3.file 2>&1 & \ No newline at end of file