普通大模型,未ppo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

107 lines
3.9 KiB

8 months ago
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
from transformers import pipeline
import redis
import uuid
import json
from threading import Thread
from vllm import LLM, SamplingParams
import time
import threading
import time
import concurrent.futures
import requests
import socket
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=3, password="zhicheng123*")
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
db_key_query = 'query'
db_key_querying = 'querying'
db_key_result = 'result'
batch_size = 32
# sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>", max_tokens=4096)
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,stop="</s>", presence_penalty=1.1, max_tokens=8192)
models_path = "/home/majiahui/project/LLaMA-Factory-main/lora_openbuddy_mistral_7b_v20_3-32k_paper_model_10"
llm = LLM(model=models_path, tokenizer_mode="slow", max_model_len=8192)
class log:
def __init__(self):
pass
def log(*args, **kwargs):
format = '%Y/%m/%d-%H:%M:%S'
format_h = '%Y-%m-%d'
value = time.localtime(int(time.time()))
dt = time.strftime(format, value)
dt_log_file = time.strftime(format_h, value)
log_file = 'log_file/access-%s' % dt_log_file + ".log"
if not os.path.exists(log_file):
with open(os.path.join(log_file), 'w', encoding='utf-8') as f:
print(dt, *args, file=f, **kwargs)
else:
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f:
print(dt, *args, file=f, **kwargs)
def classify(batch_size): # 调用模型,设置最大batch_size
while True:
texts = []
query_ids = []
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
time.sleep(2)
continue
# for i in range(min(redis_.llen(db_key_query), batch_size)):
while True:
query = redis_.lpop(db_key_query) # 获取query的text
if query == None:
break
query = query.decode('UTF-8')
data_dict_path = json.loads(query)
path = data_dict_path['path']
with open(path, encoding='utf8') as f1:
# 加载文件的对象
data_dict = json.load(f1)
# query_ids.append(json.loads(query)['id'])
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch
query_id = data_dict['id']
text = data_dict["text"]
query_ids.append(query_id)
texts.append(text)
if len(texts) == batch_size:
break
outputs = llm.generate(texts, sampling_params) # 调用模型
generated_text_list = [""] * len(texts)
print("outputs", len(outputs))
for i, output in enumerate(outputs):
index = output.request_id
generated_text = output.outputs[0].text
generated_text_list[int(index)] = generated_text
for (id_, output) in zip(query_ids, generated_text_list):
return_text = {"texts": output, "probabilities": None, "status_code": 200}
load_result_path = "./new_data_logs/{}.json".format(id_)
with open(load_result_path, 'w', encoding='utf8') as f2:
# ensure_ascii=False才能输入中文,否则是Unicode字符
# indent=2 JSON数据的缩进,美观
json.dump(return_text, f2, ensure_ascii=False, indent=4)
redis_.set(id_, load_result_path, 86400)
# redis_.set(id_, load_result_path, 30)
redis_.srem(db_key_querying, id_)
log.log('start at',
'query_id:{},load_result_path:{},return_text:{}'.format(
id_, load_result_path, return_text))
if __name__ == '__main__':
t = Thread(target=classify, args=(batch_size,))
t.start()