commit 4e65ce94b0ac0b8b2b8c461ad284a807902b805d Author: majiahui@haimaqingfan.com Date: Fri Sep 27 17:59:51 2024 +0800 首次提交 diff --git a/gunicorn_config.py b/gunicorn_config.py new file mode 100644 index 0000000..c7216e5 --- /dev/null +++ b/gunicorn_config.py @@ -0,0 +1,21 @@ +# 并行工作线程数 +workers = 8 +# 监听内网端口5000【按需要更改】 +bind = '0.0.0.0:12003' + +loglevel = 'debug' + +worker_class = "gevent" +# 设置守护进程【关闭连接时,程序仍在运行】 +daemon = True +# 设置超时时间120s,默认为30s。按自己的需求进行设置 +timeout = 120 +# 设置访问日志和错误信息日志路径 +accesslog = './logs/acess1.log' +errorlog = './logs/error1.log' +# access_log_format = '%(h) - %(t)s - %(u)s - %(s)s %(H)s' +# errorlog = '-' # 记录到标准输出 + + +# 设置最大并发量 +worker_connections = 20000 diff --git a/mistral_api.py b/mistral_api.py new file mode 100644 index 0000000..5671788 --- /dev/null +++ b/mistral_api.py @@ -0,0 +1,131 @@ +from flask import Flask, jsonify +from flask import request +from transformers import pipeline +import redis +import uuid +import json +from threading import Thread +from vllm import LLM, SamplingParams +import time +import threading +import time +import concurrent.futures +import requests +import socket + +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=2, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_queryset = 'queryset' +db_key_result = 'result' +db_key_error = 'error' + +def smtp_f(name): + # 在下面的代码行中使用断点来调试脚本。 + import smtplib + from email.mime.text import MIMEText + from email.header import Header + + sender = '838878981@qq.com' # 发送邮箱 + receivers = ['838878981@qq.com'] # 接收邮箱 + auth_code = "jfqtutaiwrtdbcge" # 授权码 + + message = MIMEText('基础大模型出现错误,紧急', 'plain', 'utf-8') + message['From'] = Header("Sender<%s>" % sender) # 发送者 + message['To'] = Header("Receiver<%s>" % receivers[0]) # 接收者 + + subject = name + message['Subject'] = Header(subject, 'utf-8') + + try: + server = smtplib.SMTP_SSL('smtp.qq.com', 465) + server.login(sender, auth_code) + server.sendmail(sender, receivers, message.as_string()) + print("邮件发送成功") + server.close() + except smtplib.SMTPException: + print("Error: 无法发送邮件") + + +@app.route("/predict", methods=["POST"]) +def predict(): + text = request.json["texts"] # 获取用户query中的文本 例如"I love you" + id_ = str(uuid.uuid1()) # 为query生成唯一标识 + print("uuid: ", uuid) + d = {'id': id_, 'text': text} # 绑定文本和query id + try: + load_request_path = './request_data_logs/{}.json'.format(id_) + with open(load_request_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(d, f2, ensure_ascii=False, indent=4) + redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis + redis_.sadd(db_key_querying, id_) + redis_.sadd(db_key_queryset, id_) + return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 200} + except: + return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 400} + smtp_f("vllm-main-drop") + return jsonify(return_text) # 返回结果 + + +@app.route("/search", methods=["POST"]) +def search(): + id_ = request.json['id'] # 获取用户query中的文本 例如"I love you" + result = redis_.get(id_) # 获取该query的模型结果 + try: + if result is not None: + result_path = result.decode('UTF-8') + with open(result_path, encoding='utf8') as f1: + # 加载文件的对象 + result_dict = json.load(f1) + code = result_dict["status_code"] + texts = result_dict["texts"] + probabilities = result_dict["probabilities"] + if str(code) == 400: + redis_.rpush(db_key_error, json.dumps({"id": id_})) + return False + result_text = {'code': code, 'text': texts, 'probabilities': probabilities} + else: + querying_list = list(redis_.smembers(db_key_querying)) + querying_set = set() + for i in querying_list: + querying_set.add(i.decode()) + + querying_bool = False + if id_ in querying_set: + querying_bool = True + + query_list_json = redis_.lrange(db_key_query, 0, -1) + query_set_ids = set() + for i in query_list_json: + data_dict = json.loads(i) + query_id = data_dict['id'] + query_set_ids.add(query_id) + + query_bool = False + if id_ in query_set_ids: + query_bool = True + + if querying_bool == True and query_bool == True: + result_text = {'code': "201", 'text': "", 'probabilities': None} + elif querying_bool == True and query_bool == False: + result_text = {'code': "202", 'text': "", 'probabilities': None} + else: + result_text = {'code': "203", 'text': "", 'probabilities': None} + load_request_path = './request_data_logs_203/{}.json'.format(id_) + with open(load_request_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(result_text, f2, ensure_ascii=False, indent=4) + except: + smtp_f("vllm-main") + result_text = {'code': "400", 'text': "", 'probabilities': None} + return jsonify(result_text) # 返回结果 + +if __name__ == "__main__": + app.run(debug=False, host='0.0.0.0', port=12006) diff --git a/qwen_model_perdict_vllm_4.py b/qwen_model_perdict_vllm_4.py new file mode 100644 index 0000000..d1da47f --- /dev/null +++ b/qwen_model_perdict_vllm_4.py @@ -0,0 +1,181 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "0" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=2, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 32 + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + model_dir = "/home/majiahui/project/models-llm/qwen2_0_5B_rewrite_lora_hebing" + args = EngineArgs(model_dir) + args.max_num_seqs = 16 # batch最大20条样本 + args.gpu_memory_utilization = 0.3 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j in zip(prompt_texts, query_ids): + return_list.append((i, j, sampling_params)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids,sampling_params) + return process_requests(engine, test_prompts) + + +# chat对话接口 +# @app.route("/predict/", methods=["POST"]) +# def chat(): +# # request = request.json() +# # query = request.get('query', None) +# # history = request.get('history', []) +# # system = request.get('system', 'You are a helpful assistant.') +# # stream = request.get("stream", False) +# # user_stop_words = request.get("user_stop_words", +# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 +# +# query = request.json['query'] +# +# +# # 构造prompt +# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) +# +# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" +# +# +# return_output = main(prompt_text, sampling_params) +# return_info = { +# "request_id": return_output.request_id, +# "text": return_output.outputs[0].text +# } +# +# return jsonify(return_info) + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + text = data_dict["text"] + query_ids.append(query_id) + texts.append(text) + if len(texts) == batch_size: + break + + sampling_params = SamplingParams(temperature=0.8, top_p=0.95, frequency_penalty=0.5, max_tokens=8192) + outputs = main(texts, query_ids, sampling_params) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +if __name__ == '__main__': + t = Thread(target=classify, args=(batch_size,)) + t.start() diff --git a/run_api_gunicorn.sh b/run_api_gunicorn.sh new file mode 100644 index 0000000..4060eb5 --- /dev/null +++ b/run_api_gunicorn.sh @@ -0,0 +1 @@ +gunicorn mistral_api:app -c gunicorn_config.py diff --git a/run_model.sh b/run_model.sh new file mode 100644 index 0000000..1629894 --- /dev/null +++ b/run_model.sh @@ -0,0 +1 @@ +nohup python qwen_model_perdict_vllm_4.py > myout_model_qwen.file 2>&1 &