
commit
4e65ce94b0
5 changed files with 335 additions and 0 deletions
@ -0,0 +1,21 @@ |
|||
# 并行工作线程数 |
|||
workers = 8 |
|||
# 监听内网端口5000【按需要更改】 |
|||
bind = '0.0.0.0:12003' |
|||
|
|||
loglevel = 'debug' |
|||
|
|||
worker_class = "gevent" |
|||
# 设置守护进程【关闭连接时,程序仍在运行】 |
|||
daemon = True |
|||
# 设置超时时间120s,默认为30s。按自己的需求进行设置 |
|||
timeout = 120 |
|||
# 设置访问日志和错误信息日志路径 |
|||
accesslog = './logs/acess1.log' |
|||
errorlog = './logs/error1.log' |
|||
# access_log_format = '%(h) - %(t)s - %(u)s - %(s)s %(H)s' |
|||
# errorlog = '-' # 记录到标准输出 |
|||
|
|||
|
|||
# 设置最大并发量 |
|||
worker_connections = 20000 |
@ -0,0 +1,131 @@ |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
from transformers import pipeline |
|||
import redis |
|||
import uuid |
|||
import json |
|||
from threading import Thread |
|||
from vllm import LLM, SamplingParams |
|||
import time |
|||
import threading |
|||
import time |
|||
import concurrent.futures |
|||
import requests |
|||
import socket |
|||
|
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=2, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_queryset = 'queryset' |
|||
db_key_result = 'result' |
|||
db_key_error = 'error' |
|||
|
|||
def smtp_f(name): |
|||
# 在下面的代码行中使用断点来调试脚本。 |
|||
import smtplib |
|||
from email.mime.text import MIMEText |
|||
from email.header import Header |
|||
|
|||
sender = '838878981@qq.com' # 发送邮箱 |
|||
receivers = ['838878981@qq.com'] # 接收邮箱 |
|||
auth_code = "jfqtutaiwrtdbcge" # 授权码 |
|||
|
|||
message = MIMEText('基础大模型出现错误,紧急', 'plain', 'utf-8') |
|||
message['From'] = Header("Sender<%s>" % sender) # 发送者 |
|||
message['To'] = Header("Receiver<%s>" % receivers[0]) # 接收者 |
|||
|
|||
subject = name |
|||
message['Subject'] = Header(subject, 'utf-8') |
|||
|
|||
try: |
|||
server = smtplib.SMTP_SSL('smtp.qq.com', 465) |
|||
server.login(sender, auth_code) |
|||
server.sendmail(sender, receivers, message.as_string()) |
|||
print("邮件发送成功") |
|||
server.close() |
|||
except smtplib.SMTPException: |
|||
print("Error: 无法发送邮件") |
|||
|
|||
|
|||
@app.route("/predict", methods=["POST"]) |
|||
def predict(): |
|||
text = request.json["texts"] # 获取用户query中的文本 例如"I love you" |
|||
id_ = str(uuid.uuid1()) # 为query生成唯一标识 |
|||
print("uuid: ", uuid) |
|||
d = {'id': id_, 'text': text} # 绑定文本和query id |
|||
try: |
|||
load_request_path = './request_data_logs/{}.json'.format(id_) |
|||
with open(load_request_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(d, f2, ensure_ascii=False, indent=4) |
|||
redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis |
|||
redis_.sadd(db_key_querying, id_) |
|||
redis_.sadd(db_key_queryset, id_) |
|||
return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 200} |
|||
except: |
|||
return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 400} |
|||
smtp_f("vllm-main-drop") |
|||
return jsonify(return_text) # 返回结果 |
|||
|
|||
|
|||
@app.route("/search", methods=["POST"]) |
|||
def search(): |
|||
id_ = request.json['id'] # 获取用户query中的文本 例如"I love you" |
|||
result = redis_.get(id_) # 获取该query的模型结果 |
|||
try: |
|||
if result is not None: |
|||
result_path = result.decode('UTF-8') |
|||
with open(result_path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
result_dict = json.load(f1) |
|||
code = result_dict["status_code"] |
|||
texts = result_dict["texts"] |
|||
probabilities = result_dict["probabilities"] |
|||
if str(code) == 400: |
|||
redis_.rpush(db_key_error, json.dumps({"id": id_})) |
|||
return False |
|||
result_text = {'code': code, 'text': texts, 'probabilities': probabilities} |
|||
else: |
|||
querying_list = list(redis_.smembers(db_key_querying)) |
|||
querying_set = set() |
|||
for i in querying_list: |
|||
querying_set.add(i.decode()) |
|||
|
|||
querying_bool = False |
|||
if id_ in querying_set: |
|||
querying_bool = True |
|||
|
|||
query_list_json = redis_.lrange(db_key_query, 0, -1) |
|||
query_set_ids = set() |
|||
for i in query_list_json: |
|||
data_dict = json.loads(i) |
|||
query_id = data_dict['id'] |
|||
query_set_ids.add(query_id) |
|||
|
|||
query_bool = False |
|||
if id_ in query_set_ids: |
|||
query_bool = True |
|||
|
|||
if querying_bool == True and query_bool == True: |
|||
result_text = {'code': "201", 'text': "", 'probabilities': None} |
|||
elif querying_bool == True and query_bool == False: |
|||
result_text = {'code': "202", 'text': "", 'probabilities': None} |
|||
else: |
|||
result_text = {'code': "203", 'text': "", 'probabilities': None} |
|||
load_request_path = './request_data_logs_203/{}.json'.format(id_) |
|||
with open(load_request_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(result_text, f2, ensure_ascii=False, indent=4) |
|||
except: |
|||
smtp_f("vllm-main") |
|||
result_text = {'code': "400", 'text': "", 'probabilities': None} |
|||
return jsonify(result_text) # 返回结果 |
|||
|
|||
if __name__ == "__main__": |
|||
app.run(debug=False, host='0.0.0.0', port=12006) |
@ -0,0 +1,181 @@ |
|||
import os |
|||
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|||
import argparse |
|||
from typing import List, Tuple |
|||
from threading import Thread |
|||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams |
|||
# from vllm.utils import FlexibleArgumentParser |
|||
from flask import Flask, jsonify |
|||
from flask import request |
|||
import redis |
|||
import time |
|||
import json |
|||
|
|||
# http接口服务 |
|||
# app = FastAPI() |
|||
app = Flask(__name__) |
|||
app.config["JSON_AS_ASCII"] = False |
|||
|
|||
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=2, password="zhicheng123*") |
|||
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|||
|
|||
db_key_query = 'query' |
|||
db_key_querying = 'querying' |
|||
db_key_result = 'result' |
|||
batch_size = 32 |
|||
|
|||
class log: |
|||
def __init__(self): |
|||
pass |
|||
|
|||
def log(*args, **kwargs): |
|||
format = '%Y/%m/%d-%H:%M:%S' |
|||
format_h = '%Y-%m-%d' |
|||
value = time.localtime(int(time.time())) |
|||
dt = time.strftime(format, value) |
|||
dt_log_file = time.strftime(format_h, value) |
|||
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
|||
if not os.path.exists(log_file): |
|||
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
else: |
|||
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
|||
print(dt, *args, file=f, **kwargs) |
|||
|
|||
|
|||
def initialize_engine() -> LLMEngine: |
|||
"""Initialize the LLMEngine from the command line arguments.""" |
|||
# model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" |
|||
model_dir = "/home/majiahui/project/models-llm/qwen2_0_5B_rewrite_lora_hebing" |
|||
args = EngineArgs(model_dir) |
|||
args.max_num_seqs = 16 # batch最大20条样本 |
|||
args.gpu_memory_utilization = 0.3 |
|||
# 加载模型 |
|||
return LLMEngine.from_engine_args(args) |
|||
|
|||
engine = initialize_engine() |
|||
|
|||
|
|||
def create_test_prompts(prompt_texts, query_ids, sampling_params) -> List[Tuple[str,str, SamplingParams]]: |
|||
"""Create a list of test prompts with their sampling parameters.""" |
|||
|
|||
return_list = [] |
|||
|
|||
for i,j in zip(prompt_texts, query_ids): |
|||
return_list.append((i, j, sampling_params)) |
|||
return return_list |
|||
|
|||
|
|||
def process_requests(engine: LLMEngine, |
|||
test_prompts: List[Tuple[str, str, SamplingParams]]): |
|||
"""Continuously process a list of prompts and handle the outputs.""" |
|||
|
|||
return_list = [] |
|||
while test_prompts or engine.has_unfinished_requests(): |
|||
if test_prompts: |
|||
prompt, query_id, sampling_params = test_prompts.pop(0) |
|||
engine.add_request(str(query_id), prompt, sampling_params) |
|||
|
|||
request_outputs: List[RequestOutput] = engine.step() |
|||
|
|||
for request_output in request_outputs: |
|||
if request_output.finished: |
|||
return_list.append(request_output) |
|||
return return_list |
|||
|
|||
|
|||
def main(prompt_texts, query_ids, sampling_params): |
|||
"""Main function that sets up and runs the prompt processing.""" |
|||
|
|||
test_prompts = create_test_prompts(prompt_texts, query_ids,sampling_params) |
|||
return process_requests(engine, test_prompts) |
|||
|
|||
|
|||
# chat对话接口 |
|||
# @app.route("/predict/", methods=["POST"]) |
|||
# def chat(): |
|||
# # request = request.json() |
|||
# # query = request.get('query', None) |
|||
# # history = request.get('history', []) |
|||
# # system = request.get('system', 'You are a helpful assistant.') |
|||
# # stream = request.get("stream", False) |
|||
# # user_stop_words = request.get("user_stop_words", |
|||
# # []) # list[str],用户自定义停止句,例如:['Observation: ', 'Action: ']定义了2个停止句,遇到任何一个都会停止 |
|||
# |
|||
# query = request.json['query'] |
|||
# |
|||
# |
|||
# # 构造prompt |
|||
# # prompt_text, prompt_tokens = _build_prompt(generation_config, tokenizer, query, history=history, system=system) |
|||
# |
|||
# prompt_text = f"<|im_start|>user\n{query}\n<|im_end|>\n<|im_start|>assistant\n" |
|||
# |
|||
# |
|||
# return_output = main(prompt_text, sampling_params) |
|||
# return_info = { |
|||
# "request_id": return_output.request_id, |
|||
# "text": return_output.outputs[0].text |
|||
# } |
|||
# |
|||
# return jsonify(return_info) |
|||
|
|||
def classify(batch_size): # 调用模型,设置最大batch_size |
|||
while True: |
|||
texts = [] |
|||
query_ids = [] |
|||
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|||
time.sleep(2) |
|||
continue |
|||
|
|||
# for i in range(min(redis_.llen(db_key_query), batch_size)): |
|||
while True: |
|||
query = redis_.lpop(db_key_query) # 获取query的text |
|||
if query == None: |
|||
break |
|||
|
|||
query = query.decode('UTF-8') |
|||
data_dict_path = json.loads(query) |
|||
|
|||
path = data_dict_path['path'] |
|||
with open(path, encoding='utf8') as f1: |
|||
# 加载文件的对象 |
|||
data_dict = json.load(f1) |
|||
# query_ids.append(json.loads(query)['id']) |
|||
# texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|||
query_id = data_dict['id'] |
|||
text = data_dict["text"] |
|||
query_ids.append(query_id) |
|||
texts.append(text) |
|||
if len(texts) == batch_size: |
|||
break |
|||
|
|||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, frequency_penalty=0.5, max_tokens=8192) |
|||
outputs = main(texts, query_ids, sampling_params) |
|||
|
|||
print("预测完成") |
|||
generated_text_dict = {} |
|||
print("outputs", len(outputs)) |
|||
for i, output in enumerate(outputs): |
|||
index = output.request_id |
|||
generated_text = output.outputs[0].text |
|||
generated_text_dict[index] = generated_text |
|||
|
|||
for id_, output in generated_text_dict.items(): |
|||
|
|||
return_text = {"texts": output, "probabilities": None, "status_code": 200} |
|||
load_result_path = "./new_data_logs/{}.json".format(id_) |
|||
with open(load_result_path, 'w', encoding='utf8') as f2: |
|||
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|||
# indent=2 JSON数据的缩进,美观 |
|||
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|||
redis_.set(id_, load_result_path, 86400) |
|||
# redis_.set(id_, load_result_path, 30) |
|||
redis_.srem(db_key_querying, id_) |
|||
log.log('start at', |
|||
'query_id:{},load_result_path:{},return_text:{}'.format( |
|||
id_, load_result_path, return_text)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
t = Thread(target=classify, args=(batch_size,)) |
|||
t.start() |
@ -0,0 +1 @@ |
|||
gunicorn mistral_api:app -c gunicorn_config.py |
@ -0,0 +1 @@ |
|||
nohup python qwen_model_perdict_vllm_4.py > myout_model_qwen.file 2>&1 & |
Loading…
Reference in new issue