diff --git a/flask_api.py b/flask_api.py index 9943fd8..f9c72f2 100644 --- a/flask_api.py +++ b/flask_api.py @@ -112,8 +112,8 @@ lable_2_id_content = { "中文摘要": 2, "中文关键词": 3, "英文关键词": 4, - "图": 5, - "表": 6, + "图题": 5, + "表题": 6, "参考文献": 7 } @@ -135,13 +135,13 @@ for i in lable_2_id_title_no_title: tokenizer = AutoTokenizer.from_pretrained( - "data_zong_shout_3", + "data_zong_shout_4", use_fast=True, revision="main", trust_remote_code=False, ) -model_name = "data_zong_shout_3" +model_name = "data_zong_shout_4" config = AutoConfig.from_pretrained( model_name, num_labels=len(lable_2_id_fenji), @@ -156,7 +156,7 @@ model_roberta_zong = AutoModelForSequenceClassification.from_pretrained( ignore_mismatched_sizes=False, ).to(device) -model_name = "data_zong_no_start_shout_3" +model_name = "data_zong_no_start_shout_4" config = AutoConfig.from_pretrained( model_name, num_labels=len(lable_2_id_fenji), @@ -171,7 +171,7 @@ model_roberta_zong_no_start = AutoModelForSequenceClassification.from_pretrained ignore_mismatched_sizes=False, ).to(device) -model_name = "data_zong_no_end_shout_3" +model_name = "data_zong_no_end_shout_4" config = AutoConfig.from_pretrained( model_name, num_labels=len(lable_2_id_fenji), @@ -201,14 +201,14 @@ model_roberta_zong_no_end = AutoModelForSequenceClassification.from_pretrained( # ignore_mismatched_sizes=False, # ).to(device) -model_name = "data_content_roberta" +model_name = "data_title_roberta_4" config = AutoConfig.from_pretrained( model_name, - num_labels=len(lable_2_id_content), + num_labels=len(lable_2_id_title), revision="main", trust_remote_code=False ) -model_content_roberta = AutoModelForSequenceClassification.from_pretrained( +model_title_roberta_cls = AutoModelForSequenceClassification.from_pretrained( model_name, config=config, revision="main", @@ -216,14 +216,14 @@ model_content_roberta = AutoModelForSequenceClassification.from_pretrained( ignore_mismatched_sizes=False, ).to(device) -model_name = "data_content_roberta_no_end" +model_name = "data_title_no_title_roberta_4" config = AutoConfig.from_pretrained( model_name, - num_labels=len(lable_2_id_content), + num_labels=len(lable_2_id_title_no_title), revision="main", trust_remote_code=False ) -model_content_roberta_no_end = AutoModelForSequenceClassification.from_pretrained( +model_title_roberta_cls_2 = AutoModelForSequenceClassification.from_pretrained( model_name, config=config, revision="main", @@ -231,14 +231,15 @@ model_content_roberta_no_end = AutoModelForSequenceClassification.from_pretraine ignore_mismatched_sizes=False, ).to(device) -model_name = "data_content_roberta_no_start" + +model_name = "data_content_roberta_4" config = AutoConfig.from_pretrained( model_name, num_labels=len(lable_2_id_content), revision="main", trust_remote_code=False ) -model_content_roberta_no_start = AutoModelForSequenceClassification.from_pretrained( +model_content_roberta = AutoModelForSequenceClassification.from_pretrained( model_name, config=config, revision="main", @@ -246,14 +247,14 @@ model_content_roberta_no_start = AutoModelForSequenceClassification.from_pretrai ignore_mismatched_sizes=False, ).to(device) -model_name = "data_title_roberta_2" +model_name = "data_content_roberta_no_end_4" config = AutoConfig.from_pretrained( model_name, - num_labels=len(lable_2_id_title), + num_labels=len(lable_2_id_content), revision="main", trust_remote_code=False ) -model_title_roberta = AutoModelForSequenceClassification.from_pretrained( +model_content_roberta_no_end = AutoModelForSequenceClassification.from_pretrained( model_name, config=config, revision="main", @@ -261,14 +262,14 @@ model_title_roberta = AutoModelForSequenceClassification.from_pretrained( ignore_mismatched_sizes=False, ).to(device) -model_name = "data_title_no_title_roberta_2" +model_name = "data_content_roberta_no_start_4" config = AutoConfig.from_pretrained( model_name, - num_labels=len(lable_2_id_title_no_title), + num_labels=len(lable_2_id_content), revision="main", trust_remote_code=False ) -model_data_title_no_title_roberta = AutoModelForSequenceClassification.from_pretrained( +model_content_roberta_no_start = AutoModelForSequenceClassification.from_pretrained( model_name, config=config, revision="main", @@ -282,7 +283,6 @@ model_data_title_roberta_ner = AutoModelForTokenClassification.from_pretrained(m model_data_title_roberta_ner.eval().to(device) - def gen_zong_cls(content_list): paper_quanwen_lable_list = [] @@ -322,7 +322,7 @@ def gen_zong_cls(content_list): new_sen_list = new_sen_list + [content_list[right][1][:30]] new_sen = "\n".join(new_sen_list) - if len(new_sen) > 510 or left_end_bool == False or right_end_bool == False: + if len(new_sen) > 510 or (left_end_bool == False and right_end_bool == False): break else: old_sen = new_sen @@ -399,7 +399,9 @@ def gen_zong_cls(content_list): res_score = {} # 目标句子在中间预测结果 - sentence_list = [sentence_zong_zhong[0]] + + sentence_zong_zhong_str = sentence_zong_zhong[0].replace("\n", "[SEP]") + sentence_list = [sentence_zong_zhong_str] # sentence_list = [data[1][0]] result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt") result_on_device = {key: value.to(device) for key, value in result.items()} @@ -410,27 +412,29 @@ def gen_zong_cls(content_list): else: res_score[predicted_class_idx_zhong] += sentence_zong_zhong[1] - sentence_list = [sentence_zong_no_end[0]] + sentence_zong_no_end_str = sentence_zong_no_end[0].replace("\n", "[SEP]") + sentence_list = [sentence_zong_no_end_str] # sentence_list = [data[1][0]] result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt") result_on_device = {key: value.to(device) for key, value in result.items()} logits = model_roberta_zong_no_end(**result_on_device) predicted_class_idx_qian = torch.argmax(logits[0], dim=1).item() - if predicted_class_idx_zhong not in res_score: - res_score[predicted_class_idx_zhong] = sentence_zong_no_end[1] + if predicted_class_idx_qian not in res_score: + res_score[predicted_class_idx_qian] = sentence_zong_no_end[1] else: - res_score[predicted_class_idx_zhong] += sentence_zong_no_end[1] + res_score[predicted_class_idx_qian] += sentence_zong_no_end[1] - sentence_list = [sentence_zong_no_start[0]] + sentence_zong_no_start_str = sentence_zong_no_start[0].replace("\n", "[SEP]") + sentence_list = [sentence_zong_no_start_str] # sentence_list = [data[1][0]] result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt") result_on_device = {key: value.to(device) for key, value in result.items()} logits = model_roberta_zong_no_start(**result_on_device) predicted_class_idx_hou = torch.argmax(logits[0], dim=1).item() - if predicted_class_idx_zhong not in res_score: - res_score[predicted_class_idx_zhong] = sentence_zong_no_end[1] + if predicted_class_idx_hou not in res_score: + res_score[predicted_class_idx_hou] = sentence_zong_no_start[1] else: - res_score[predicted_class_idx_zhong] += sentence_zong_no_end[1] + res_score[predicted_class_idx_hou] += sentence_zong_no_start[1] res_score_list = sorted(res_score.items(), key=lambda item: item[1], reverse=True) predicted_class_idx = res_score_list[0][0] @@ -445,7 +449,7 @@ def gen_zong_cls(content_list): def gen_title_cls(content_list): paper_quanwen_lable_list = [] - for index, paper_sen in content_list: + for index, paper_sen in enumerate(content_list): paper_start_list = [paper_sen[:30] for _, paper_sen in content_list[0:index]] paper_end_list = [paper_sen[:30] for _, paper_sen in content_list[index + 1:len(content_list)]] @@ -453,7 +457,7 @@ def gen_title_cls(content_list): # print(len(paper_end_list)) paper_new_start = "\n".join(paper_start_list) paper_new_end = "\n".join(paper_end_list) - paper_object_dangqian = "" + paper_sen + "" + paper_object_dangqian = "" + paper_sen[1] + "" paper_zhong = "\n".join([paper_new_start, paper_object_dangqian, paper_new_end]) paper_zhong = paper_zhong.strip("\n") @@ -495,18 +499,84 @@ def gen_title_cls(content_list): paper_zhong = old_sen # 目标句子在中间预测结果 + paper_zhong = paper_zhong.replace("\n", "[SEP]") sentence_list = [paper_zhong] # sentence_list = [data[1][0]] result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt") result_on_device = {key: value.to(device) for key, value in result.items()} - logits = model_title_roberta(**result_on_device) + logits = model_title_roberta_cls(**result_on_device) predicted_class_idx = torch.argmax(logits[0], dim=1).item() - paper_quanwen_lable_list.append([index, paper_sen, id_2_lable_title[predicted_class_idx]]) + paper_quanwen_lable_list.append([paper_sen[0], paper_sen[1], id_2_lable_title[predicted_class_idx]]) + + return paper_quanwen_lable_list + + +def gen_title_cls_2(content_list): + paper_quanwen_lable_list = [] + for index, paper_sen in enumerate(content_list): + + paper_start_list = [paper_sen[:30] for _, paper_sen in content_list[0:index]] + paper_end_list = [paper_sen[:30] for _, paper_sen in content_list[index + 1:len(content_list)]] + # print(len(paper_start_list)) + # print(len(paper_end_list)) + paper_new_start = "\n".join(paper_start_list) + paper_new_end = "\n".join(paper_end_list) + paper_object_dangqian = "" + paper_sen[1] + "" + paper_zhong = "\n".join([paper_new_start, paper_object_dangqian, paper_new_end]) + paper_zhong = paper_zhong.strip("\n") + + if len(paper_zhong) > 510: + data_paper_list = str(paper_zhong).split("\n") + start_index = 0 + for i in range(len(data_paper_list)): + if "" in data_paper_list[i]: + start_index = i + break + left_end = 0 + right_end = len(data_paper_list) - 1 + left = start_index + right = start_index + left_end_bool = True + right_end_bool = True + old_sen = data_paper_list[start_index] + while True: + if left - 1 >= left_end: + left = left - 1 + else: + left_end_bool = False + if right + 1 <= right_end: + right = right + 1 + else: + right_end_bool = False + + new_sen_list = [old_sen] + if left_end_bool == True: + new_sen_list = [data_paper_list[left]] + new_sen_list + if right_end_bool == True: + new_sen_list = new_sen_list + [data_paper_list[right]] + + new_sen = "\n".join(new_sen_list) + if len(new_sen) > 510: + break + else: + old_sen = new_sen + paper_zhong = old_sen + + # 目标句子在中间预测结果 + paper_zhong = paper_zhong.replace("\n", "[SEP]") + sentence_list = [paper_zhong] + # sentence_list = [data[1][0]] + result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt") + result_on_device = {key: value.to(device) for key, value in result.items()} + logits = model_title_roberta_cls_2(**result_on_device) + predicted_class_idx = torch.argmax(logits[0], dim=1).item() + paper_quanwen_lable_list.append([paper_sen[0], paper_sen[1], id_2_lable_title_no_title[predicted_class_idx]]) return paper_quanwen_lable_list def gen_content_cls(content_list): + content_list = sorted(content_list, key=lambda item: item[0]) paper_quanwen_lable_list = [] for index, paper_sen in content_list: # 视野前后7句 @@ -534,6 +604,7 @@ def gen_content_cls(content_list): paper_hou = "\n".join([paper_object_dangqian, paper_new_end]) # 目标句子在中间预测结果 + paper_zhong = paper_zhong.replace("\n", "[SEP]") sentence_list = [paper_zhong] # sentence_list = [data[1][0]] result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt") @@ -541,6 +612,7 @@ def gen_content_cls(content_list): logits = model_content_roberta(**result_on_device) predicted_class_idx_zhong = torch.argmax(logits[0], dim=1).item() + paper_qian = paper_qian.replace("\n", "[SEP]") sentence_list = [paper_qian] # sentence_list = [data[1][0]] result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt") @@ -548,6 +620,7 @@ def gen_content_cls(content_list): logits = model_content_roberta_no_end(**result_on_device) predicted_class_idx_qian = torch.argmax(logits[0], dim=1).item() + paper_hou = paper_hou.replace("\n", "[SEP]") sentence_list = [paper_hou] # sentence_list = [data[1][0]] result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt") @@ -575,6 +648,7 @@ def gen_content_cls(content_list): paper_quanwen_lable_list.append([index, paper_sen, id_2_lable_content[predicted_class_idx]]) return paper_quanwen_lable_list + def split_lists_recursive(a, b, a_soc, b_soc, target_size=510, result_a=None, result_b=None): """ 递归地同时分割两个列表,保持一一对应关系 @@ -631,11 +705,10 @@ def split_lists_recursive(a, b, a_soc, b_soc, target_size=510, result_a=None, re # 剩余部分 # target_size = current_chunk_size while True: - if b[target_size_new][0] == "B": + if b[target_size_new] == "-100": break if target_size_new == len(a): break - target_size_new += 1 a_remaining = a[target_size_new:] b_remaining = b[target_size_new:] @@ -673,28 +746,8 @@ def ner_predict(tokens): return results -def main(content: str): - - # 先整理句子,把句子整理成模型需要的格式 [id, sen, lable] - paper_content_list = [[i,j] for i,j in enumerate(content.split("\n"))] - - # 先逐句把每句话是否是标题,是否是正文,是否是无用类别识别出来, - print("先逐句把每句话是否是标题,是否是正文,是否是无用类别识别出来") - zong_list = gen_zong_cls(paper_content_list) - - # 把标题数据和正文数据,无用类别数据做区分 - title_data = [] - content_data = [] - - for data_dan in zong_list: - if data_dan[2] == "标题": - title_data.append([data_dan[0], data_dan[1]]) - if data_dan[2] == "正文": - content_data.append([data_dan[0], data_dan[1]]) - - # 把所有的标题类型提取出来,对每个标题区分标题级别 - print("把所有的标题类型提取出来,对每个标题区分标题级别") +def gen_title_ner(title_data): data_dan_sen = [i[1] for i in title_data] data_dan_sen_index = [i[0] for i in title_data] data_dan_sen_index_new = [] @@ -712,7 +765,8 @@ def main(content: str): data_dan_sen_index_new = data_dan_sen_index_new[:-1] data_dan_sen_new = data_dan_sen_new[:-1] data_dan_sen_new = ["[SEP]" if item == "\n" else item for item in data_dan_sen_new] - a_return1, b_return1 = split_lists_recursive(data_dan_sen_new, data_dan_sen_index_new, data_dan_sen_new, data_dan_sen_index_new, + a_return1, b_return1 = split_lists_recursive(data_dan_sen_new, data_dan_sen_index_new, data_dan_sen_new, + data_dan_sen_index_new, target_size=510) data_zong_train_list = [] @@ -769,20 +823,69 @@ def main(content: str): title_list.append([ii, sen, label]) title_data_dict = {} + # TODO 此处需要确定多个标签值的情况怎么办,暂时先以首次出现的标签值为准 for i in title_list: if i[0] not in title_data_dict: - title_data_dict[i[0]] = [[i[1], i[2]]] - else: - title_data_dict[i[0]] += [[i[1], i[2]]] + title_data_dict[i[0]] = [i[1], i[2]] + # else: + # title_data_dict[i[0]] += [[i[1], i[2]]] + + title_list_new = [] + for i, j in title_data_dict.items(): + title_list_new.append([i, j[0], j[1]]) print(title_data_dict) - # 把所有的标题类型提取出来,对每个标题区分标题级别 - print("把所有的标题类型提取出来,对每个标题区分标题级别") + title_list = title_list_new + + return title_list + + +def main(content: str): + + # 先整理句子,把句子整理成模型需要的格式 [id, sen, lable] + paper_content_list = [[i,j] for i,j in enumerate(content.split("\n"))] + + # 先逐句把每句话是否是标题,是否是正文,是否是无用类别识别出来, + print("先逐句把每句话是否是标题,是否是正文,是否是无用类别识别出来") + zong_list = gen_zong_cls(paper_content_list) + + # 把标题数据和正文数据,无用类别数据做区分 + title_data = [] + content_data = [] + for data_dan in zong_list: + if data_dan[2] == "标题": + title_data.append([data_dan[0], data_dan[1]]) + if data_dan[2] == "正文": + content_data.append([data_dan[0], data_dan[1]]) # 把所有的标题类型提取出来,对每个标题区分标题级别 print("把所有的标题类型提取出来,对每个标题区分标题级别") - # title_list = gen_title_cls(title_data) + + # 把所有的标题类型提取出来,对每个标题区分标题级别 + # print("把所有的标题类型提取出来,对每个标题区分标题级别") + title_list_ner = gen_title_ner(title_data) + title_list_cls = gen_title_cls(title_data) + title_list_cls_2 = gen_title_cls_2(title_data) + title_list_ner = sorted(title_list_ner, key=lambda item: item[0]) + title_list_cls = sorted(title_list_cls, key=lambda item: item[0]) + title_list_cls_2 = sorted(title_list_cls_2, key=lambda item: item[0]) + print(title_list_ner) + print(title_list_cls) + print(title_list_cls_2) + title_list = [] + for i,j in zip(title_list_ner, title_list_cls): + if i[2] == '非标题类型' or j[2] == '非标题类型': + title_list.append([i[0], i[1], '非标题类型']) + else: + title_list.append(i) + title_list_new = [] + for i in title_list: + if i[2] == '非标题类型': + content_data.append([i[0], i[1]]) + else: + title_list_new.append(i) + title_list = title_list_new # 把所有的正文类别提取出来,逐个进行打标 print("把所有的正文类别提取出来,逐个进行打标")