Browse Source

第二个正式版本

master
majiahui@haimaqingfan.com 2 days ago
parent
commit
595aa5e4d8
  1. 233
      flask_api.py

233
flask_api.py

@ -112,8 +112,8 @@ lable_2_id_content = {
"中文摘要": 2,
"中文关键词": 3,
"英文关键词": 4,
"": 5,
"": 6,
"": 5,
"": 6,
"参考文献": 7
}
@ -135,13 +135,13 @@ for i in lable_2_id_title_no_title:
tokenizer = AutoTokenizer.from_pretrained(
"data_zong_shout_3",
"data_zong_shout_4",
use_fast=True,
revision="main",
trust_remote_code=False,
)
model_name = "data_zong_shout_3"
model_name = "data_zong_shout_4"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_fenji),
@ -156,7 +156,7 @@ model_roberta_zong = AutoModelForSequenceClassification.from_pretrained(
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_zong_no_start_shout_3"
model_name = "data_zong_no_start_shout_4"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_fenji),
@ -171,7 +171,7 @@ model_roberta_zong_no_start = AutoModelForSequenceClassification.from_pretrained
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_zong_no_end_shout_3"
model_name = "data_zong_no_end_shout_4"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_fenji),
@ -201,14 +201,14 @@ model_roberta_zong_no_end = AutoModelForSequenceClassification.from_pretrained(
# ignore_mismatched_sizes=False,
# ).to(device)
model_name = "data_content_roberta"
model_name = "data_title_roberta_4"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_content),
num_labels=len(lable_2_id_title),
revision="main",
trust_remote_code=False
)
model_content_roberta = AutoModelForSequenceClassification.from_pretrained(
model_title_roberta_cls = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
@ -216,14 +216,14 @@ model_content_roberta = AutoModelForSequenceClassification.from_pretrained(
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_content_roberta_no_end"
model_name = "data_title_no_title_roberta_4"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_content),
num_labels=len(lable_2_id_title_no_title),
revision="main",
trust_remote_code=False
)
model_content_roberta_no_end = AutoModelForSequenceClassification.from_pretrained(
model_title_roberta_cls_2 = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
@ -231,14 +231,15 @@ model_content_roberta_no_end = AutoModelForSequenceClassification.from_pretraine
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_content_roberta_no_start"
model_name = "data_content_roberta_4"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_content),
revision="main",
trust_remote_code=False
)
model_content_roberta_no_start = AutoModelForSequenceClassification.from_pretrained(
model_content_roberta = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
@ -246,14 +247,14 @@ model_content_roberta_no_start = AutoModelForSequenceClassification.from_pretrai
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_title_roberta_2"
model_name = "data_content_roberta_no_end_4"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_title),
num_labels=len(lable_2_id_content),
revision="main",
trust_remote_code=False
)
model_title_roberta = AutoModelForSequenceClassification.from_pretrained(
model_content_roberta_no_end = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
@ -261,14 +262,14 @@ model_title_roberta = AutoModelForSequenceClassification.from_pretrained(
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_title_no_title_roberta_2"
model_name = "data_content_roberta_no_start_4"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_title_no_title),
num_labels=len(lable_2_id_content),
revision="main",
trust_remote_code=False
)
model_data_title_no_title_roberta = AutoModelForSequenceClassification.from_pretrained(
model_content_roberta_no_start = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
@ -282,7 +283,6 @@ model_data_title_roberta_ner = AutoModelForTokenClassification.from_pretrained(m
model_data_title_roberta_ner.eval().to(device)
def gen_zong_cls(content_list):
paper_quanwen_lable_list = []
@ -322,7 +322,7 @@ def gen_zong_cls(content_list):
new_sen_list = new_sen_list + [content_list[right][1][:30]]
new_sen = "\n".join(new_sen_list)
if len(new_sen) > 510 or left_end_bool == False or right_end_bool == False:
if len(new_sen) > 510 or (left_end_bool == False and right_end_bool == False):
break
else:
old_sen = new_sen
@ -399,7 +399,9 @@ def gen_zong_cls(content_list):
res_score = {}
# 目标句子在中间预测结果
sentence_list = [sentence_zong_zhong[0]]
sentence_zong_zhong_str = sentence_zong_zhong[0].replace("\n", "[SEP]")
sentence_list = [sentence_zong_zhong_str]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
@ -410,27 +412,29 @@ def gen_zong_cls(content_list):
else:
res_score[predicted_class_idx_zhong] += sentence_zong_zhong[1]
sentence_list = [sentence_zong_no_end[0]]
sentence_zong_no_end_str = sentence_zong_no_end[0].replace("\n", "[SEP]")
sentence_list = [sentence_zong_no_end_str]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_roberta_zong_no_end(**result_on_device)
predicted_class_idx_qian = torch.argmax(logits[0], dim=1).item()
if predicted_class_idx_zhong not in res_score:
res_score[predicted_class_idx_zhong] = sentence_zong_no_end[1]
if predicted_class_idx_qian not in res_score:
res_score[predicted_class_idx_qian] = sentence_zong_no_end[1]
else:
res_score[predicted_class_idx_zhong] += sentence_zong_no_end[1]
res_score[predicted_class_idx_qian] += sentence_zong_no_end[1]
sentence_list = [sentence_zong_no_start[0]]
sentence_zong_no_start_str = sentence_zong_no_start[0].replace("\n", "[SEP]")
sentence_list = [sentence_zong_no_start_str]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_roberta_zong_no_start(**result_on_device)
predicted_class_idx_hou = torch.argmax(logits[0], dim=1).item()
if predicted_class_idx_zhong not in res_score:
res_score[predicted_class_idx_zhong] = sentence_zong_no_end[1]
if predicted_class_idx_hou not in res_score:
res_score[predicted_class_idx_hou] = sentence_zong_no_start[1]
else:
res_score[predicted_class_idx_zhong] += sentence_zong_no_end[1]
res_score[predicted_class_idx_hou] += sentence_zong_no_start[1]
res_score_list = sorted(res_score.items(), key=lambda item: item[1], reverse=True)
predicted_class_idx = res_score_list[0][0]
@ -445,7 +449,7 @@ def gen_zong_cls(content_list):
def gen_title_cls(content_list):
paper_quanwen_lable_list = []
for index, paper_sen in content_list:
for index, paper_sen in enumerate(content_list):
paper_start_list = [paper_sen[:30] for _, paper_sen in content_list[0:index]]
paper_end_list = [paper_sen[:30] for _, paper_sen in content_list[index + 1:len(content_list)]]
@ -453,7 +457,7 @@ def gen_title_cls(content_list):
# print(len(paper_end_list))
paper_new_start = "\n".join(paper_start_list)
paper_new_end = "\n".join(paper_end_list)
paper_object_dangqian = "<Start>" + paper_sen + "<End>"
paper_object_dangqian = "<Start>" + paper_sen[1] + "<End>"
paper_zhong = "\n".join([paper_new_start, paper_object_dangqian, paper_new_end])
paper_zhong = paper_zhong.strip("\n")
@ -495,18 +499,84 @@ def gen_title_cls(content_list):
paper_zhong = old_sen
# 目标句子在中间预测结果
paper_zhong = paper_zhong.replace("\n", "[SEP]")
sentence_list = [paper_zhong]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_title_roberta(**result_on_device)
logits = model_title_roberta_cls(**result_on_device)
predicted_class_idx = torch.argmax(logits[0], dim=1).item()
paper_quanwen_lable_list.append([index, paper_sen, id_2_lable_title[predicted_class_idx]])
paper_quanwen_lable_list.append([paper_sen[0], paper_sen[1], id_2_lable_title[predicted_class_idx]])
return paper_quanwen_lable_list
def gen_title_cls_2(content_list):
paper_quanwen_lable_list = []
for index, paper_sen in enumerate(content_list):
paper_start_list = [paper_sen[:30] for _, paper_sen in content_list[0:index]]
paper_end_list = [paper_sen[:30] for _, paper_sen in content_list[index + 1:len(content_list)]]
# print(len(paper_start_list))
# print(len(paper_end_list))
paper_new_start = "\n".join(paper_start_list)
paper_new_end = "\n".join(paper_end_list)
paper_object_dangqian = "<Start>" + paper_sen[1] + "<End>"
paper_zhong = "\n".join([paper_new_start, paper_object_dangqian, paper_new_end])
paper_zhong = paper_zhong.strip("\n")
if len(paper_zhong) > 510:
data_paper_list = str(paper_zhong).split("\n")
start_index = 0
for i in range(len(data_paper_list)):
if "<Start>" in data_paper_list[i]:
start_index = i
break
left_end = 0
right_end = len(data_paper_list) - 1
left = start_index
right = start_index
left_end_bool = True
right_end_bool = True
old_sen = data_paper_list[start_index]
while True:
if left - 1 >= left_end:
left = left - 1
else:
left_end_bool = False
if right + 1 <= right_end:
right = right + 1
else:
right_end_bool = False
new_sen_list = [old_sen]
if left_end_bool == True:
new_sen_list = [data_paper_list[left]] + new_sen_list
if right_end_bool == True:
new_sen_list = new_sen_list + [data_paper_list[right]]
new_sen = "\n".join(new_sen_list)
if len(new_sen) > 510:
break
else:
old_sen = new_sen
paper_zhong = old_sen
# 目标句子在中间预测结果
paper_zhong = paper_zhong.replace("\n", "[SEP]")
sentence_list = [paper_zhong]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_title_roberta_cls_2(**result_on_device)
predicted_class_idx = torch.argmax(logits[0], dim=1).item()
paper_quanwen_lable_list.append([paper_sen[0], paper_sen[1], id_2_lable_title_no_title[predicted_class_idx]])
return paper_quanwen_lable_list
def gen_content_cls(content_list):
content_list = sorted(content_list, key=lambda item: item[0])
paper_quanwen_lable_list = []
for index, paper_sen in content_list:
# 视野前后7句
@ -534,6 +604,7 @@ def gen_content_cls(content_list):
paper_hou = "\n".join([paper_object_dangqian, paper_new_end])
# 目标句子在中间预测结果
paper_zhong = paper_zhong.replace("\n", "[SEP]")
sentence_list = [paper_zhong]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
@ -541,6 +612,7 @@ def gen_content_cls(content_list):
logits = model_content_roberta(**result_on_device)
predicted_class_idx_zhong = torch.argmax(logits[0], dim=1).item()
paper_qian = paper_qian.replace("\n", "[SEP]")
sentence_list = [paper_qian]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
@ -548,6 +620,7 @@ def gen_content_cls(content_list):
logits = model_content_roberta_no_end(**result_on_device)
predicted_class_idx_qian = torch.argmax(logits[0], dim=1).item()
paper_hou = paper_hou.replace("\n", "[SEP]")
sentence_list = [paper_hou]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
@ -575,6 +648,7 @@ def gen_content_cls(content_list):
paper_quanwen_lable_list.append([index, paper_sen, id_2_lable_content[predicted_class_idx]])
return paper_quanwen_lable_list
def split_lists_recursive(a, b, a_soc, b_soc, target_size=510, result_a=None, result_b=None):
"""
递归地同时分割两个列表保持一一对应关系
@ -631,11 +705,10 @@ def split_lists_recursive(a, b, a_soc, b_soc, target_size=510, result_a=None, re
# 剩余部分
# target_size = current_chunk_size
while True:
if b[target_size_new][0] == "B":
if b[target_size_new] == "-100":
break
if target_size_new == len(a):
break
target_size_new += 1
a_remaining = a[target_size_new:]
b_remaining = b[target_size_new:]
@ -673,28 +746,8 @@ def ner_predict(tokens):
return results
def main(content: str):
# 先整理句子,把句子整理成模型需要的格式 [id, sen, lable]
paper_content_list = [[i,j] for i,j in enumerate(content.split("\n"))]
# 先逐句把每句话是否是标题,是否是正文,是否是无用类别识别出来,
print("先逐句把每句话是否是标题,是否是正文,是否是无用类别识别出来")
zong_list = gen_zong_cls(paper_content_list)
# 把标题数据和正文数据,无用类别数据做区分
title_data = []
content_data = []
for data_dan in zong_list:
if data_dan[2] == "标题":
title_data.append([data_dan[0], data_dan[1]])
if data_dan[2] == "正文":
content_data.append([data_dan[0], data_dan[1]])
# 把所有的标题类型提取出来,对每个标题区分标题级别
print("把所有的标题类型提取出来,对每个标题区分标题级别")
def gen_title_ner(title_data):
data_dan_sen = [i[1] for i in title_data]
data_dan_sen_index = [i[0] for i in title_data]
data_dan_sen_index_new = []
@ -712,7 +765,8 @@ def main(content: str):
data_dan_sen_index_new = data_dan_sen_index_new[:-1]
data_dan_sen_new = data_dan_sen_new[:-1]
data_dan_sen_new = ["[SEP]" if item == "\n" else item for item in data_dan_sen_new]
a_return1, b_return1 = split_lists_recursive(data_dan_sen_new, data_dan_sen_index_new, data_dan_sen_new, data_dan_sen_index_new,
a_return1, b_return1 = split_lists_recursive(data_dan_sen_new, data_dan_sen_index_new, data_dan_sen_new,
data_dan_sen_index_new,
target_size=510)
data_zong_train_list = []
@ -769,20 +823,69 @@ def main(content: str):
title_list.append([ii, sen, label])
title_data_dict = {}
# TODO 此处需要确定多个标签值的情况怎么办,暂时先以首次出现的标签值为准
for i in title_list:
if i[0] not in title_data_dict:
title_data_dict[i[0]] = [[i[1], i[2]]]
else:
title_data_dict[i[0]] += [[i[1], i[2]]]
title_data_dict[i[0]] = [i[1], i[2]]
# else:
# title_data_dict[i[0]] += [[i[1], i[2]]]
title_list_new = []
for i, j in title_data_dict.items():
title_list_new.append([i, j[0], j[1]])
print(title_data_dict)
# 把所有的标题类型提取出来,对每个标题区分标题级别
print("把所有的标题类型提取出来,对每个标题区分标题级别")
title_list = title_list_new
return title_list
def main(content: str):
# 先整理句子,把句子整理成模型需要的格式 [id, sen, lable]
paper_content_list = [[i,j] for i,j in enumerate(content.split("\n"))]
# 先逐句把每句话是否是标题,是否是正文,是否是无用类别识别出来,
print("先逐句把每句话是否是标题,是否是正文,是否是无用类别识别出来")
zong_list = gen_zong_cls(paper_content_list)
# 把标题数据和正文数据,无用类别数据做区分
title_data = []
content_data = []
for data_dan in zong_list:
if data_dan[2] == "标题":
title_data.append([data_dan[0], data_dan[1]])
if data_dan[2] == "正文":
content_data.append([data_dan[0], data_dan[1]])
# 把所有的标题类型提取出来,对每个标题区分标题级别
print("把所有的标题类型提取出来,对每个标题区分标题级别")
# title_list = gen_title_cls(title_data)
# 把所有的标题类型提取出来,对每个标题区分标题级别
# print("把所有的标题类型提取出来,对每个标题区分标题级别")
title_list_ner = gen_title_ner(title_data)
title_list_cls = gen_title_cls(title_data)
title_list_cls_2 = gen_title_cls_2(title_data)
title_list_ner = sorted(title_list_ner, key=lambda item: item[0])
title_list_cls = sorted(title_list_cls, key=lambda item: item[0])
title_list_cls_2 = sorted(title_list_cls_2, key=lambda item: item[0])
print(title_list_ner)
print(title_list_cls)
print(title_list_cls_2)
title_list = []
for i,j in zip(title_list_ner, title_list_cls):
if i[2] == '非标题类型' or j[2] == '非标题类型':
title_list.append([i[0], i[1], '非标题类型'])
else:
title_list.append(i)
title_list_new = []
for i in title_list:
if i[2] == '非标题类型':
content_data.append([i[0], i[1]])
else:
title_list_new.append(i)
title_list = title_list_new
# 把所有的正文类别提取出来,逐个进行打标
print("把所有的正文类别提取出来,逐个进行打标")

Loading…
Cancel
Save