Browse Source

论文标题正文分级

master
majiahui@haimaqingfan.com 2 weeks ago
parent
commit
1f60a66369
  1. 478
      flask_api.py
  2. 1
      run_api.sh

478
flask_api.py

@ -0,0 +1,478 @@
import json
import os
import re
import requests
import time
from flask import Flask, jsonify, Response, request
import pandas as pd
# flask配置
app = Flask(__name__)
app.config["JSON_AS_ASCII"] = False
# os.environ["WANDB_DISABLED"] = "true"
# 设置CUDA设备
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
from tqdm import tqdm
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
)
import torch
from tqdm import tqdm
'''
请求格式
{
"content": "论文正文内容"
}
输出格式
{
"code": 200,
"paper-lable":[
{
"index": 0,
"sentence" : "我参加的是17组的小组学习,主题是关于日本方言。我主要负责参",
lable: "正文"
},
{
"index": 1,
"sentence" : "1.2.1 小组学习",
lable: "三级标题"
},
...
]
}
'''
# 检查GPU是否可用
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"使用设备: {device}")
lable_2_id_fenji = {
"标题": 0,
"正文": 1,
"无用类别": 2
}
id_2_lable_fenji = {}
for i in lable_2_id_fenji:
if lable_2_id_fenji[i] not in id_2_lable_fenji:
id_2_lable_fenji[lable_2_id_fenji[i]] = i
lable_2_id_title = {
"一级标题": 0,
"二级标题": 1,
"三级标题": 2,
"中文摘要标题": 3,
"致谢标题": 4,
"英文摘要标题": 5,
"参考文献标题": 6
}
id_2_lable_title = {}
for i in lable_2_id_title:
if lable_2_id_title[i] not in id_2_lable_title:
id_2_lable_title[lable_2_id_title[i]] = i
lable_2_id_content = {
"正文": 0,
"英文摘要": 1,
"中文摘要": 2,
"中文关键词": 3,
"英文关键词": 4,
"": 5,
"": 6,
"参考文献": 7
}
id_2_lable_content = {}
for i in lable_2_id_content:
if lable_2_id_content[i] not in id_2_lable_content:
id_2_lable_content[lable_2_id_content[i]] = i
tokenizer = AutoTokenizer.from_pretrained(
"data_zong_roberta",
use_fast=True,
revision="main",
trust_remote_code=False,
)
model_name = "data_zong_roberta"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_fenji),
revision="main",
trust_remote_code=False
)
model_roberta_zong = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
trust_remote_code=False,
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_zong_roberta_no_start"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_fenji),
revision="main",
trust_remote_code=False
)
model_roberta_zong_no_start = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
trust_remote_code=False,
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_zong_roberta_no_end"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_fenji),
revision="main",
trust_remote_code=False
)
model_roberta_zong_no_end = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
trust_remote_code=False,
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_title_roberta"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_title),
revision="main",
trust_remote_code=False
)
model_title_roberta = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
trust_remote_code=False,
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_content_roberta"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_content),
revision="main",
trust_remote_code=False
)
model_content_roberta = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
trust_remote_code=False,
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_content_roberta_no_end"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_content),
revision="main",
trust_remote_code=False
)
model_content_roberta_no_end = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
trust_remote_code=False,
ignore_mismatched_sizes=False,
).to(device)
model_name = "data_content_roberta_no_start"
config = AutoConfig.from_pretrained(
model_name,
num_labels=len(lable_2_id_content),
revision="main",
trust_remote_code=False
)
model_content_roberta_no_start = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
revision="main",
trust_remote_code=False,
ignore_mismatched_sizes=False,
).to(device)
def gen_zong_cls(content_list):
paper_quanwen_lable_list = []
for index, paper_sen in content_list:
# 视野前后7句
paper_start_list = [paper_sen[:30] for _, paper_sen in content_list[max(index - 7, 0):index]]
paper_end_list = [paper_sen[:30] for _, paper_sen in content_list[index + 1:index + 8]]
# print(len(paper_start_list))
# print(len(paper_end_list))
paper_new_start = "\n".join(paper_start_list)
paper_new_end = "\n".join(paper_end_list)
paper_object_dangqian = "<Start>" + paper_sen + "<End>"
paper_zhong = "\n".join([paper_new_start, paper_object_dangqian, paper_new_end])
# 视野前15句
paper_start_list = [paper_sen[:30] for _, paper_sen in content_list[max(index - 15, 0):index]]
# print(len(paper_start_list))
paper_new_start = "\n".join(paper_start_list)
paper_object_dangqian = "<Start>" + paper_sen + "<End>"
paper_qian = "\n".join([paper_new_start, paper_object_dangqian])
# 视野后15句
paper_end_list = [paper_sen[:30] for _, paper_sen in content_list[index + 1:index + 16]]
# print(len(paper_end_list))
paper_new_end = "\n".join(paper_end_list)
paper_object_dangqian = "<Start>" + paper_sen + "<End>"
paper_hou = "\n".join([paper_object_dangqian, paper_new_end])
# 目标句子在中间预测结果
sentence_list = [paper_zhong]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_roberta_zong(**result_on_device)
predicted_class_idx_zhong = torch.argmax(logits[0], dim=1).item()
sentence_list = [paper_qian]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_roberta_zong_no_end(**result_on_device)
predicted_class_idx_qian = torch.argmax(logits[0], dim=1).item()
sentence_list = [paper_hou]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_roberta_zong_no_start(**result_on_device)
predicted_class_idx_hou = torch.argmax(logits[0], dim=1).item()
id_2_len = {}
for i in [predicted_class_idx_qian, predicted_class_idx_hou, predicted_class_idx_zhong]:
if i not in id_2_len:
id_2_len[i] = 1
else:
id_2_len[i] += 1
queding = False
predicted_class_idx = ""
for i in id_2_len:
if id_2_len[i] >= 2:
queding = True
predicted_class_idx = i
break
if queding == False:
predicted_class_idx = 0
paper_quanwen_lable_list.append([index, paper_sen, id_2_lable_fenji[predicted_class_idx]])
return paper_quanwen_lable_list
def gen_title_cls(content_list):
paper_quanwen_lable_list = []
for index, paper_sen in content_list:
paper_start_list = [paper_sen[:30] for _, paper_sen in content_list[0:index]]
paper_end_list = [paper_sen[:30] for _, paper_sen in content_list[index + 1:len(content_list)]]
# print(len(paper_start_list))
# print(len(paper_end_list))
paper_new_start = "\n".join(paper_start_list)
paper_new_end = "\n".join(paper_end_list)
paper_object_dangqian = "<Start>" + paper_sen + "<End>"
paper_zhong = "\n".join([paper_new_start, paper_object_dangqian, paper_new_end])
paper_zhong = paper_zhong.strip("\n")
if len(paper_zhong) > 510:
data_paper_list = str(paper_zhong).split("\n")
start_index = 0
for i in range(len(data_paper_list)):
if "<Start>" in data_paper_list[i]:
start_index = i
break
left_end = 0
right_end = len(data_paper_list) - 1
left = start_index
right = start_index
left_end_bool = True
right_end_bool = True
old_sen = data_paper_list[start_index]
while True:
if left - 1 >= left_end:
left = left - 1
else:
left_end_bool = False
if right + 1 <= right_end:
right = right + 1
else:
right_end_bool = False
new_sen_list = [old_sen]
if left_end_bool == True:
new_sen_list = [data_paper_list[left]] + new_sen_list
if right_end_bool == True:
new_sen_list = new_sen_list + [data_paper_list[right]]
new_sen = "\n".join(new_sen_list)
if len(new_sen) > 510:
break
else:
old_sen = new_sen
paper_zhong = old_sen
# 目标句子在中间预测结果
sentence_list = [paper_zhong]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_title_roberta(**result_on_device)
predicted_class_idx = torch.argmax(logits[0], dim=1).item()
paper_quanwen_lable_list.append([index, paper_sen, id_2_lable_title[predicted_class_idx]])
return paper_quanwen_lable_list
def gen_content_cls(content_list):
paper_quanwen_lable_list = []
for index, paper_sen in content_list:
# 视野前后7句
paper_start_list = [paper_sen[:30] for _, paper_sen in content_list[max(index - 7, 0):index]]
paper_end_list = [paper_sen[:30] for _, paper_sen in content_list[index + 1:index + 8]]
# print(len(paper_start_list))
# print(len(paper_end_list))
paper_new_start = "\n".join(paper_start_list)
paper_new_end = "\n".join(paper_end_list)
paper_object_dangqian = "<Start>" + paper_sen + "<End>"
paper_zhong = "\n".join([paper_new_start, paper_object_dangqian, paper_new_end])
# 视野前15句
paper_start_list = [paper_sen[:30] for _, paper_sen in content_list[max(index - 15, 0):index]]
# print(len(paper_start_list))
paper_new_start = "\n".join(paper_start_list)
paper_object_dangqian = "<Start>" + paper_sen + "<End>"
paper_qian = "\n".join([paper_new_start, paper_object_dangqian])
# 视野后15句
paper_end_list = [paper_sen[:30] for _, paper_sen in content_list[index + 1:index + 16]]
# print(len(paper_end_list))
paper_new_end = "\n".join(paper_end_list)
paper_object_dangqian = "<Start>" + paper_sen + "<End>"
paper_hou = "\n".join([paper_object_dangqian, paper_new_end])
# 目标句子在中间预测结果
sentence_list = [paper_zhong]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_content_roberta(**result_on_device)
predicted_class_idx_zhong = torch.argmax(logits[0], dim=1).item()
sentence_list = [paper_qian]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_content_roberta_no_end(**result_on_device)
predicted_class_idx_qian = torch.argmax(logits[0], dim=1).item()
sentence_list = [paper_hou]
# sentence_list = [data[1][0]]
result = tokenizer(sentence_list, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
result_on_device = {key: value.to(device) for key, value in result.items()}
logits = model_content_roberta_no_start(**result_on_device)
predicted_class_idx_hou = torch.argmax(logits[0], dim=1).item()
id_2_len = {}
for i in [predicted_class_idx_qian, predicted_class_idx_hou, predicted_class_idx_zhong]:
if i not in id_2_len:
id_2_len[i] = 1
else:
id_2_len[i] += 1
queding = False
predicted_class_idx = ""
for i in id_2_len:
if id_2_len[i] >= 2:
queding = True
predicted_class_idx = i
break
if queding == False:
predicted_class_idx = 0
paper_quanwen_lable_list.append([index, paper_sen, id_2_lable_content[predicted_class_idx]])
return paper_quanwen_lable_list
def main(content: str):
# 先整理句子,把句子整理成模型需要的格式 [id, sen, lable]
paper_content_list = [[i,j] for i,j in enumerate(content.split("\n"))]
# 先逐句把每句话是否是标题,是否是正文,是否是无用类别识别出来,
zong_list = gen_zong_cls(paper_content_list)
# 把标题数据和正文数据,无用类别数据做区分
title_data = []
content_data = []
for data_dan in zong_list:
if data_dan[2] == "标题":
title_data.append([data_dan[0], data_dan[1]])
if data_dan[2] == "正文":
content_data.append([data_dan[0], data_dan[1]])
# 把所有的标题类型提取出来,对每个标题区分标题级别
title_list = gen_title_cls(title_data)
# 把所有的正文类别提取出来,逐个进行打标
content_list = gen_content_cls(content_data)
paper_content_list_new = title_list + content_list
# 综合排序
paper_content_list_new = sorted(paper_content_list_new, key=lambda item: item[0])
paper_content_info_list = []
for data_dan_info in paper_content_list_new:
paper_content_info_list.append({
"index": data_dan_info[0],
"sentence": data_dan_info[1],
"lable" : data_dan_info[2]
})
return paper_content_info_list
@app.route("/predict", methods=["POST"])
def search():
print(request.remote_addr)
content = request.json["content"]
response = main(content)
return jsonify(response) # 返回结果
if __name__ == "__main__":
app.run(host="0.0.0.0", port=28100, threaded=True, debug=False)

1
run_api.sh

@ -0,0 +1 @@
nohup python flask_api.py > main.log 2>&1 &
Loading…
Cancel
Save