数据处理代码,为了生成chatgpt数据
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

86 lines
2.3 KiB

import json
import re
import math
import numpy as np
from tqdm import tqdm
prompt = "请把“{}”这段文字翻译成英文"
chinese_keyword_prompt = "请为“{}”这段论文摘要生成3-5个关键字,使用阿拉伯数字作为序号标注,例如“1.xxx \n2.xxx \n3.xxx \n4.xxx \n5.xxx \n"
pantten_title = "(.*?)》为题目生成论文摘要,要求生成的字数在"
path = "./data/paper_prompt_title_3/title_zhaiyao_prompt_data.txt"
with open(path, encoding="utf-8") as f:
text = f.read()
text_list = text.split("请以《")
data_list = []
chinese_keyword_data_list = []
for text_dan in tqdm(text_list):
# print(text_dan)
try:
title_prompt, zhaiyao = text_dan.split("**************")
except:
continue
result_biaoti_list = re.findall(pantten_title, title_prompt)
try:
result_biaoti_list[0]
except:
print(title_prompt)
continue
title = str(result_biaoti_list[0]).strip("\n")
zhaiyao = str(zhaiyao).strip("\n")
data_list.append(prompt.format(zhaiyao))
chinese_keyword_data_list.append(chinese_keyword_prompt.format(zhaiyao))
import random
random.shuffle(data_list)
with open("./data/zhaiyao_to_/zhaiyao_fanyi_prompt.txt", mode="w", encoding="utf-8") as f:
for i in data_list:
f.write(json.dumps(i, ensure_ascii=False))
f.write("\n")
random.shuffle(chinese_keyword_data_list)
with open("./data/zhaiyao_to_/zhaiyao_chinese_keyword_prompt.txt", mode="w", encoding="utf-8") as f:
for i in chinese_keyword_data_list:
f.write(json.dumps(i, ensure_ascii=False))
f.write("\n")
# for lable in table_of_contents:
# text_len = len(paper_text)
# dan_nerlable = [text_len, text_len + len(lable[0]), lable[1]]
# nerlable_list.append(dan_nerlable)
# paper_text += lable[0]
# paper_text += "@"
#
# paper_dan = {"text": paper_text, "label": nerlable_list}
#
# ner_lable.append(str(table_of_contents))
# text_zong.append(paper_dan)
#
# with open("../data/train.txt", mode="w", encoding="utf-8") as f:
# for i in text_zong:
# f.write(json.dumps(i, ensure_ascii=False))
# f.write("\n")
#
#
# with open("../data/train_lable.txt", mode="w") as f:
# for i in ner_lable:
# f.write(json.dumps(i, ensure_ascii=False))
# f.write("\n")