import json import re import math import numpy as np from tqdm import tqdm task_book_main_content_prompt = "请根据题目为《{}》,和研究内容为“{}”总结出至少6点本篇论文应完成的主要内容,使用阿拉伯数字排列" pantten_title = "(.*?)》为题目的研究内容,包括整体简介和分最少三个方面总结" path = "./data/paper_prompt_title_3/title_jianjie_prompt_data.txt" with open(path, encoding="utf-8") as f: text = f.read() text_list = text.split("请帮我生成《") data_list = [] chinese_keyword_data_list = [] for text_dan in tqdm(text_list): # print(text_dan) try: title_prompt, jianjie = text_dan.split("**************") except: continue result_biaoti_list = re.findall(pantten_title, title_prompt) try: result_biaoti_list[0] except: print(title_prompt) continue title = str(result_biaoti_list[0]).strip("\n") jianjie = str(jianjie).strip("\n") data_list.append(task_book_main_content_prompt.format(title, jianjie)) import random random.shuffle(data_list) with open("./data/jianjie_to_/task_book_prompt.txt", mode="w", encoding="utf-8") as f: for i in data_list: f.write(json.dumps(i, ensure_ascii=False)) f.write("\n") # for lable in table_of_contents: # text_len = len(paper_text) # dan_nerlable = [text_len, text_len + len(lable[0]), lable[1]] # nerlable_list.append(dan_nerlable) # paper_text += lable[0] # paper_text += "@" # # paper_dan = {"text": paper_text, "label": nerlable_list} # # ner_lable.append(str(table_of_contents)) # text_zong.append(paper_dan) # # with open("../data/train.txt", mode="w", encoding="utf-8") as f: # for i in text_zong: # f.write(json.dumps(i, ensure_ascii=False)) # f.write("\n") # # # with open("../data/train_lable.txt", mode="w") as f: # for i in ner_lable: # f.write(json.dumps(i, ensure_ascii=False)) # f.write("\n")