import json import re import math import numpy as np from tqdm import tqdm # pantten_second_biaoti = '[2二ⅡⅠ][、.]\s{0,}?[\u4e00-\u9fa5]+' pantten_biaoti = '[1-9一二三四五六七八九ⅠⅡⅢⅣⅤⅥⅦⅧⅨ][、.]\s{0,}?[\u4e00-\u9fa5a-zA-Z]+' first_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的大标题“{}”的内容补充完整,补充内容字数在{}字左右" small_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的小标题“{}”的内容补充完整,补充内容字数在{}字左右" thanks = "致谢" references = "参考文献" excursus = "附录" u = 3.5 # 均值μ sig = math.sqrt(6.0) zong_gradient = 6 paper_word_count = 12000 path = "../data/paper_prompt_title_3/title_mulu_prompt_data.txt" with open(path, encoding="utf-8") as f: text = f.read() def normal_distribution(x): y = np.exp(-(x - u) ** 2 / (2 * sig ** 2)) / (math.sqrt(2 * math.pi) * sig) return y text_list = text.split("\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n") ner_lable = [] text_zong = [] train_list = [] for text_dan in tqdm(text_list): # print(text_dan) try: title, mulu = text_dan.split("**********************************************") except: continue title = str(title).strip("\n") mulu = str(mulu).strip("\n") paper_text = "题目:{}@目录:".format(title) table_of_contents = [] nerlable_list = [] # mulu_base64 = base64.b64encode(mulu.encode('utf-8')) # mulu_path = os.path.join(uuid_path, "mulu.txt") # with open(mulu_path, 'wb', encoding='utf8') as f2: # f2.write(mulu_base64) mulu_list = str(mulu).split("\n") mulu_list = [i.strip() for i in mulu_list if i != ""] mulu_str = "@".join(mulu_list) mulu_list_bool = [] for i in mulu_list: result_biaoti_list = re.findall(pantten_biaoti, i) if result_biaoti_list != []: mulu_list_bool.append((i, "一级标题")) else: mulu_list_bool.append((i, "二级标题")) mulu_list_bool_part = mulu_list_bool[:3] if mulu_list_bool_part[0][1] != "一级标题": continue if mulu_list_bool_part[0][1] == mulu_list_bool_part[1][1] == mulu_list_bool_part[2][1] == "一级标题": continue thanks_references_bool_table = mulu_list_bool[-5:] for i in thanks_references_bool_table: try: if references in i[0]: mulu_list_bool.remove(i) if thanks in i[0]: mulu_list_bool.remove(i) if excursus in i[0]: mulu_list_bool.remove(i) except: print(thanks_references_bool_table) continue for i in mulu_list_bool: if i[1] == "一级标题": paper_dan = { "title": "@@" + i[0], "small_title": [], "word_count": 0 } table_of_contents.append(paper_dan) else: table_of_contents[-1]["small_title"].append(i[0]) x_list = [0] y_list = [normal_distribution(0)] gradient = zong_gradient/len(table_of_contents) for i in range(len(table_of_contents)-1): x_gradient = x_list[-1] + gradient x_list.append(x_gradient) y_list.append(normal_distribution(x_list[-1])) dan_gradient = paper_word_count/sum(y_list) for i in range(len(y_list)): table_of_contents[i]["word_count"] = dan_gradient * y_list[i] # print(table_of_contents) # # print(len(table_of_contents)) table_of_contents_new = [] for dabiaoti_index in range(len(table_of_contents)): dabiaoti_dict = table_of_contents[dabiaoti_index] table_of_contents_new.append([dabiaoti_dict["title"], 0]) for xiaobiaoti in dabiaoti_dict["small_title"]: table_of_contents_new.append([xiaobiaoti, int(dabiaoti_dict["word_count"]/len(dabiaoti_dict["small_title"]))]) small_task_list = [] content_index = 0 while True: if content_index == len(table_of_contents_new): break subtitle, word_count = table_of_contents_new[content_index] prompt = small_title_prompt if content_index == 0 and table_of_contents_new[1][0][:2] == "@@" and subtitle[:2] == "@@": subtitle, prompt, word_count = subtitle[2:], first_title_prompt, 800 if content_index == len(table_of_contents_new) -1 and subtitle[:2] == "@@": subtitle, prompt, word_count = subtitle[2:], first_title_prompt, 800 paper_content = [ content_index, title, mulu, subtitle, prompt, word_count ] small_task_list.append(paper_content) content_index += 1 for i in small_task_list: if i[3][:2] == "@@": continue elif i[5] > 1280: continue else: paper_prompt = i[4].format(i[1], i[2], i[3], i[5]) if len(paper_prompt) < 768: train_list.append(paper_prompt) else: continue import random random.shuffle(train_list) train_list_shuffle = train_list[:100000] with open("../data/title_to_/prompt.txt", mode="w", encoding="utf-8") as f: for i in train_list: f.write(json.dumps(i, ensure_ascii=False)) f.write("\n") with open("../data/title_to_/prompt_shuffle.txt", mode="w", encoding="utf-8") as f: for i in train_list_shuffle: f.write(json.dumps(i, ensure_ascii=False)) f.write("\n") # for lable in table_of_contents: # text_len = len(paper_text) # dan_nerlable = [text_len, text_len + len(lable[0]), lable[1]] # nerlable_list.append(dan_nerlable) # paper_text += lable[0] # paper_text += "@" # # paper_dan = {"text": paper_text, "label": nerlable_list} # # ner_lable.append(str(table_of_contents)) # text_zong.append(paper_dan) # # with open("../data/train.txt", mode="w", encoding="utf-8") as f: # for i in text_zong: # f.write(json.dumps(i, ensure_ascii=False)) # f.write("\n") # # # with open("../data/train_lable.txt", mode="w") as f: # for i in ner_lable: # f.write(json.dumps(i, ensure_ascii=False)) # f.write("\n")