You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
46 lines
2.0 KiB
46 lines
2.0 KiB
![]()
2 years ago
|
import operator
|
||
|
import torch
|
||
|
from transformers import BertTokenizerFast, BertForMaskedLM
|
||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
|
||
|
tokenizer = BertTokenizerFast.from_pretrained("macbert4csc-base-chinese")
|
||
|
model = BertForMaskedLM.from_pretrained("macbert4csc-base-chinese")
|
||
|
model.to(device)
|
||
|
|
||
|
texts = ["今天新情很好,你找到你最喜欢的工作,我也很高心。", "今天新情很好,你找到你最喜欢的工作,我也很高心。"]
|
||
|
with torch.no_grad():
|
||
|
input = tokenizer(texts, padding=True, return_tensors='pt').to(device)
|
||
|
print(input)
|
||
|
input_ids = input['input_ids'].to(device)
|
||
|
token_type_ids = input["token_type_ids"].to(device)
|
||
|
attention_mask = input['attention_mask'].to(device)
|
||
|
print()
|
||
|
outputs = model(input_ids,token_type_ids,attention_mask)
|
||
|
|
||
|
def get_errors(corrected_text, origin_text):
|
||
|
sub_details = []
|
||
|
for i, ori_char in enumerate(origin_text):
|
||
|
if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
|
||
|
# add unk word
|
||
|
corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
|
||
|
continue
|
||
|
if i >= len(corrected_text):
|
||
|
continue
|
||
|
if ori_char != corrected_text[i]:
|
||
|
if ori_char.lower() == corrected_text[i]:
|
||
|
# pass english upper char
|
||
|
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
|
||
|
continue
|
||
|
sub_details.append((ori_char, corrected_text[i], i, i + 1))
|
||
|
sub_details = sorted(sub_details, key=operator.itemgetter(2))
|
||
|
return corrected_text, sub_details
|
||
|
|
||
|
|
||
|
result = []
|
||
|
for ids, text in zip(outputs.logits, texts):
|
||
|
_text = tokenizer.decode(torch.argmax(ids, dim=-1), skip_special_tokens=True).replace(' ', '')
|
||
|
corrected_text = _text[:len(text)]
|
||
|
corrected_text, details = get_errors(corrected_text, text)
|
||
|
print(text, ' => ', corrected_text, details)
|
||
|
result.append((text, corrected_text, details))
|
||
|
print(result)
|