Browse Source

修复bug

div_单条上传
majiahui@haimaqingfan.com 1 month ago
parent
commit
f84c17d1c4
  1. 341
      main.py

341
main.py

@ -2,21 +2,37 @@
# 按 Shift+F10 执行或将其替换为您的代码。
# 按 双击 Shift 在所有地方搜索类、文件、工具窗口、操作和设置。
import os
import faiss
import numpy as np
from tqdm import tqdm
from sentence_transformers import SentenceTransformer
import requests
import time
from flask import Flask, jsonify
from flask import request
from flask import Flask, jsonify, Response, request
from openai import OpenAI
from flask_cors import CORS
import pandas as pd
import concurrent.futures
import json
app = Flask(__name__)
CORS(app)
app.config["JSON_AS_ASCII"] = False
model = SentenceTransformer('/home/majiahui/project/models-llm/bge-large-zh-v1.5')
openai_api_key = "token-abc123"
openai_api_base = "http://127.0.0.1:12011/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
# model = "1"
model_encode = SentenceTransformer('/home/majiahui/project/models-llm/bge-large-zh-v1.5')
propmt_connect = '''我是一名中医,你是一个中医的医生的助理,我的患者有一个症状,症状如下:
{}
根据这些症状我通过查找资料{}
@ -26,7 +42,7 @@ propmt_connect_ziliao = '''在“{}”资料中,有如下相关内容:
{}'''
def dialog_line_parse(url, text):
def dialog_line_parse(text):
"""
将数据输入模型进行分析并输出结果
:param url: 模型url
@ -34,8 +50,9 @@ def dialog_line_parse(url, text):
:return: 模型返回结果
"""
url_predict = "http://118.178.228.101:12004/predict"
response = requests.post(
url,
url_predict,
json=text,
timeout=100000
)
@ -49,46 +66,167 @@ def dialog_line_parse(url, text):
# )
print("{}】 Failed to get a proper response from remote "
"server. Status Code: {}. Response: {}"
"".format(url, response.status_code, response.text))
"".format(url_predict, response.status_code, response.text))
return {}
# ['choices'][0]['message']['content']
#
# text = text['messages'][0]['content']
# return_text = {
# 'code': 200,
# 'id': "1",
# 'object': 0,
# 'created': 0,
# 'model': 0,
# 'choices': [
# {
# 'index': 0,
# 'message': {
# 'role': 'assistant',
# 'content': text
# },
# 'logprobs': None,
# 'finish_reason': 'stop'
# }
# ],
# 'usage': 0,
# 'system_fingerprint': 0
# }
# return return_text
def shengcehng_array(data):
embs = model.encode(data, normalize_embeddings=True)
embs = model_encode.encode(data, normalize_embeddings=True)
return embs
def Building_vector_database(type, name, df):
data_ndarray = np.empty((0, 1024))
for sen in df:
data_ndarray = np.concatenate((data_ndarray, shengcehng_array([sen[0]])))
print("data_ndarray.shape", data_ndarray.shape)
print("data_ndarray.shape", data_ndarray.shape)
np.save(f'data_np/{name}.npy', data_ndarray)
def Building_vector_database(title, df):
# 加载需要处理的数据(有效且未向量化)
to_process = df[(df["有效"] == True) & (df["已向量化"] == False)]
if len(to_process) == 0:
print("无新增数据需要向量化")
return
def ulit_request_file(file, title):
file_name = file.filename
file_name_save = "data_file/{}.csv".format(title)
file.save(file_name_save)
# 生成向量数组
new_vectors = shengcehng_array(to_process["总结"].tolist()) # 假设这是你的向量生成函数
# try:
# with open(file_name_save, encoding="gbk") as f:
# content = f.read()
# except:
# with open(file_name_save, encoding="utf-8") as f:
# content = f.read()
# elif file_name.split(".")[-1] == "docx":
# content = docx2txt.process(file_name_save)
# 加载现有向量库和索引
vector_path = f"data_np/{title}.npy"
index_path = f"data_np/{title}_index.json"
# content_list = [i for i in content.split("\n")]
df = pd.read_csv(file_name_save, sep="\t", encoding="utf-8").values.tolist()
vectors = np.load(vector_path) if os.path.exists(vector_path) else np.empty((0, 1024))
index_data = {}
if os.path.exists(index_path):
with open(index_path, "r") as f:
index_data = json.load(f)
return df
# 更新索引和向量库
start_idx = len(vectors)
vectors = np.vstack([vectors, new_vectors])
for i, (_, row) in enumerate(to_process.iterrows()):
index_data[row["ID"]] = {
"row": start_idx + i,
"valid": True
}
# 保存数据
np.save(vector_path, vectors)
with open(index_path, "w") as f:
json.dump(index_data, f)
# 标记已向量化
df.loc[to_process.index, "已向量化"] = True
df.to_csv(f"data_file_res/{title}.csv", sep="\t", index=False)
def delete_data(title, data_id):
# 更新CSV标记
csv_path = f"data_file_res/{title}.csv"
df = pd.read_csv(csv_path, sep="\t", dtype={"ID": str})
df.loc[df["ID"] == data_id, "有效"] = False
df.to_csv(csv_path, sep="\t", index=False)
# 更新索引标记
index_path = f"data_np/{title}_index.json"
if os.path.exists(index_path):
with open(index_path, "r+") as f:
index_data = json.load(f)
if data_id in index_data:
index_data[data_id]["valid"] = False
f.seek(0)
json.dump(index_data, f)
f.truncate()
def check_file_exists(file_path):
"""
检查文件是否存在
def main(question, db_type, top):
参数:
file_path (str): 要检查的文件路径
返回:
bool: 文件存在返回True否则返回False
"""
return os.path.isfile(file_path)
def ulit_request_file(new_id, sentence, title):
file_name_res_save = f"data_file_res/{title}.csv"
# 初始化或读取CSV文件
if os.path.exists(file_name_res_save):
df = pd.read_csv(file_name_res_save, sep="\t")
# 检查是否已存在相同正文
if sentence in df["正文"].values:
print("正文已存在,跳过处理")
return df
else:
df = pd.DataFrame(columns=["ID", "正文", "总结", "有效", "已向量化"])
# 添加新数据(生成唯一ID)
new_row = {
"ID": str(new_id),
"正文": sentence,
"总结": None,
"有效": True,
"已向量化": False
}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
# 筛选需要处理的记录
to_process = df[(df["总结"].isna()) & (df["有效"] == True)]
# 调用API生成总结(示例保留原有逻辑)
data_list = []
for _, row in to_process.iterrows():
data_list.append({
"model": "gpt-4-turbo",
"messages": [{
"role": "user",
"content": f"{row['正文']}\n以上这条中可能包含了一些病情或者症状,请帮我归纳这条中所对应的病情或者症状是哪些,总结出来,不需要很长,简单归纳即可,直接输出症状或者病情,可以包含一些形容词来辅助描述,不需要有辅助词汇"
}],
"top_p": 0.9,
"temperature": 0.6
})
# 并发处理请求
with concurrent.futures.ThreadPoolExecutor(200) as executor:
results = list(executor.map(dialog_line_parse, data_list))
# 更新总结字段
for idx, result in zip(to_process.index, results):
summary = result['choices'][0]['message']['content']
df.at[idx, "总结"] = summary
# 保存更新后的CSV
df.to_csv(file_name_res_save, sep="\t", index=False)
return df
def main(question, title, top):
db_dict = {
"1": "yetianshi"
}
@ -114,30 +252,43 @@ def main(question, db_type, top):
根据提问匹配上下文
'''
d = 1024
db_type_list = db_type.split(",")
db_type_list = title.split(",")
paper_list_str = ""
for i in db_type_list:
for title_dan in db_type_list:
embs = shengcehng_array([question])
index = faiss.IndexFlatIP(d) # buid the index
data_np = np.load(f"data_np/{i}.npy")
# data_str = open(f"data_file/{i}.txt").read().split("\n")
data_str = pd.read_csv(f"data_file/{i}.csv", sep="\t", encoding="utf-8").values.tolist()
index.add(data_np)
# 查找向量
vector_path = f"data_np/{title_dan}.npy"
index_path = f"data_np/{title_dan}_index.json"
if not os.path.exists(vector_path) or not os.path.exists(index_path):
return np.empty((0, 1024))
vectors = np.load(vector_path)
with open(index_path, "r") as f:
index_data = json.load(f)
data_str = pd.read_csv(f"data_file_res/{title_dan}.csv", sep="\t", encoding="utf-8").values.tolist()
index.add(vectors)
D, I = index.search(embs, int(top))
print(I)
reference_list = []
for i,j in zip(I[0], D[0]):
reference_list.append([data_str[i], j])
if data_str[i][3] == True:
reference_list.append([data_str[i], j])
for i,j in enumerate(reference_list):
paper_list_str += "{}\n{},此篇文章的转发数为{},评论数为{},点赞数为{}\n,此篇文章跟问题的相关度为{}%\n".format(str(i+1), j[0][0], j[0][1], j[0][2], j[0][3], j[1])
paper_list_str += "{}\n{},此篇文章跟问题的相关度为{}%\n".format(str(i+1), j[0][1], j[1])
'''
构造prompt
'''
print("paper_list_str", paper_list_str)
9/0
propmt_connect_ziliao_input = []
for i in db_type_list:
propmt_connect_ziliao_input.append(propmt_connect_ziliao.format(i, paper_list_str))
@ -147,61 +298,70 @@ def main(question, db_type, top):
'''
生成回答
'''
url_predict = "http://192.168.31.74:26000/predict"
url_search = "http://192.168.31.74:26000/search"
# data = {
# "content": propmt_connect_input
# }
data = {
"content": propmt_connect_input,
"model": "qwq-32",
"top_p": 0.9,
"temperature": 0.6
}
res = dialog_line_parse(url_predict, data)
id_ = res["texts"]["id"]
data = {
"id": id_
}
while True:
res = dialog_line_parse(url_search, data)
if res["code"] == 200:
break
else:
time.sleep(1)
spilt_str = "</think>"
think, response = str(res["text"]).split(spilt_str)
return think, response
@app.route("/upload_file", methods=["POST"])
def upload_file():
print(request.remote_addr)
file = request.files.get('file')
title = request.form.get("title")
df = ulit_request_file(file, title)
Building_vector_database("1", title, df)
return_json = {
"code": 200,
"info": "上传完成"
}
return jsonify(return_json) # 返回结果
return model_generate_stream(propmt_connect_input)
def model_generate_stream(prompt):
messages = [
{"role": "user", "content": prompt}
]
stream = client.chat.completions.create(model=model,
messages=messages,
stream=True)
printed_reasoning_content = False
printed_content = False
for chunk in stream:
reasoning_content = None
content = None
# Check the content is reasoning_content or content
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content = chunk.choices[0].delta.reasoning_content
elif hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if reasoning_content is not None:
if not printed_reasoning_content:
printed_reasoning_content = True
print("reasoning_content:", end="", flush=True)
print(reasoning_content, end="", flush=True)
elif content is not None:
if not printed_content:
printed_content = True
print("\ncontent:", end="", flush=True)
# Extract and print the content
# print(content, end="", flush=True)
print(content)
yield content
@app.route("/upload_file_check", methods=["POST"])
def upload_file_check():
print(request.remote_addr)
file = request.files.get('file')
sentence = request.form.get('sentence')
title = request.form.get("title")
df = ulit_request_file(file, title)
Building_vector_database("1", title, df)
new_id = request.form.get("id")
state = request.form.get("state")
'''
{
"1": "csv",
"2": "xlsx",
"3": "txt",
"4": "pdf"
}
'''
state_res = ""
if state == "1":
df = ulit_request_file(new_id, sentence, title)
Building_vector_database(title, df)
state_res = "上传完成"
elif state == "2":
delete_data(title, new_id)
state_res = "删除完成"
return_json = {
"code": 200,
"info": "上传完成"
"info": state_res
}
return jsonify(return_json) # 返回结果
@ -210,15 +370,10 @@ def upload_file_check():
def search():
print(request.remote_addr)
texts = request.json["texts"]
text_type = request.json["text_type"]
title = request.json["title"]
top = request.json["top"]
think, response = main(texts, text_type, top)
return_json = {
"code": 200,
"think": think,
"response": response
}
return jsonify(return_json) # 返回结果
response = main(texts, title, top)
return Response(response, mimetype='text/plain; charset=utf-8') # 返回结果
if __name__ == "__main__":

Loading…
Cancel
Save