Browse Source

增加测试scokt请求,并更改流程

div_测试
majiahui@haimaqingfan.com 5 days ago
parent
commit
8d7708f7b0
  1. 72
      main.py

72
main.py

@ -211,6 +211,55 @@ def ulit_request_file(new_id, sentence, title):
"content": f"{row['正文']}\n以上这条中可能包含了一些病情或者症状,请帮我归纳这条中所对应的病情或者症状是哪些,总结出来,不需要很长,简单归纳即可,直接输出症状或者病情,可以包含一些形容词来辅助描述,不需要有辅助词汇" "content": f"{row['正文']}\n以上这条中可能包含了一些病情或者症状,请帮我归纳这条中所对应的病情或者症状是哪些,总结出来,不需要很长,简单归纳即可,直接输出症状或者病情,可以包含一些形容词来辅助描述,不需要有辅助词汇"
}], }],
"top_p": 0.9, "top_p": 0.9,
"temperature": 0.3
})
# 并发处理请求
with concurrent.futures.ThreadPoolExecutor(200) as executor:
results = list(executor.map(dialog_line_parse, data_list))
# 更新总结字段
for idx, result in zip(to_process.index, results):
summary = result['choices'][0]['message']['content']
df.at[idx, "总结"] = summary
# 保存更新后的CSV
df.to_csv(file_name_res_save, sep="\t", index=False)
return df
def ulit_request_file_zongjie(new_id, sentence, zongjie, title):
file_name_res_save = f"data_file_res/{title}.csv"
# 初始化或读取CSV文件
if os.path.exists(file_name_res_save):
df = pd.read_csv(file_name_res_save, sep="\t")
else:
df = pd.DataFrame(columns=["ID", "正文", "总结", "有效", "已向量化"])
# # 添加新数据(生成唯一ID)
# new_row = {
# "ID": str(new_id),
# "正文": sentence,
# "总结": zongjie,
# "有效": True,
# "已向量化": False
# }
# df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
# 筛选需要处理的记录
to_process = df[df["有效"] == True]
# 调用API生成总结(示例保留原有逻辑)
data_list = []
for _, row in to_process.iterrows():
data_list.append({
"model": "gpt-4-turbo",
"messages": [{
"role": "user",
"content": f"{row['正文']}\n以上这条中可能包含了一些病情或者症状,请帮我归纳这条中所对应的病情或者症状是哪些,总结出来,不需要很长,简单归纳即可,直接输出症状或者病情,可以包含一些形容词来辅助描述,不需要有辅助词汇"
}],
"top_p": 0.9,
"temperature": 0.6 "temperature": 0.6
}) })
@ -227,6 +276,7 @@ def ulit_request_file(new_id, sentence, title):
df.to_csv(file_name_res_save, sep="\t", index=False) df.to_csv(file_name_res_save, sep="\t", index=False)
return df return df
def main(question, title, top): def main(question, title, top):
db_dict = { db_dict = {
"1": "yetianshi" "1": "yetianshi"
@ -264,7 +314,7 @@ def main(question, title, top):
vector_path = f"data_np/{title_dan}.npy" vector_path = f"data_np/{title_dan}.npy"
vectors = np.load(vector_path) vectors = np.load(vector_path)
data_str = pd.read_csv(f"data_file/{title_dan}.csv", sep="\t", encoding="utf-8").values.tolist() data_str = pd.read_csv(f"data_file_res/{title_dan}.csv", sep="\t", encoding="utf-8").values.tolist()
index.add(vectors) index.add(vectors)
D, I = index.search(embs, int(top)) D, I = index.search(embs, int(top))
print(I) print(I)
@ -274,7 +324,7 @@ def main(question, title, top):
reference_list.append([data_str[i], j]) reference_list.append([data_str[i], j])
for i,j in enumerate(reference_list): for i,j in enumerate(reference_list):
paper_list_str += "{}\n{},此篇文章跟问题的相关度为{}%\n".format(str(i+1), j[0][0], j[1]) paper_list_str += "{}\n{},此篇文章跟问题的相关度为{}%\n".format(str(i+1), j[0][1], j[1])
''' '''
@ -334,23 +384,39 @@ def upload_file_check():
sentence = request.form.get('sentence') sentence = request.form.get('sentence')
title = request.form.get("title") title = request.form.get("title")
new_id = request.form.get("id") new_id = request.form.get("id")
zongjie = request.form.get("zongjie")
state = request.form.get("state") state = request.form.get("state")
''' '''
{ {
"1": "csv", "1": "csv",
"2": "xlsx", "2": "xlsx",
"3": "txt", "3": "txt",
"4": "pdf" "4": "pdf"
} }
''' '''
# 增
state_res = "" state_res = ""
if state == "1": if state == "1":
df = ulit_request_file(new_id, sentence, title) df = ulit_request_file(new_id, sentence, title)
Building_vector_database(title, df) Building_vector_database(title, df)
state_res = "上传完成" state_res = "上传完成"
# 删
elif state == "2": elif state == "2":
delete_data(title, new_id) delete_data(title, new_id)
state_res = "删除完成" state_res = "删除完成"
# 改
elif state == "3":
df = ulit_request_file(new_id, sentence, title)
Building_vector_database(title, df)
state_res = "修改完成"
# 查
elif state == "4":
df = ulit_request_file(new_id, sentence, title)
state_res = ""
return_json = { return_json = {
"code": 200, "code": 200,
"info": state_res "info": state_res

Loading…
Cancel
Save