From 53672a0582cdf0d7ae9d46da0d8ce804d0c3ab7c Mon Sep 17 00:00:00 2001 From: "majiahui@haimaqingfan.com" Date: Wed, 12 Mar 2025 17:28:00 +0800 Subject: [PATCH] =?UTF-8?q?=E9=A6=96=E6=AC=A1=E6=8F=90=E4=BA=A4?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 0 main.py | 207 +++++++++++++++++++++++++++++++++ model_api.py | 179 +++++++++++++++++++++++++++++ model_api_deepspeed.py | 169 +++++++++++++++++++++++++++ model_api_vllm.py | 303 +++++++++++++++++++++++++++++++++++++++++++++++++ 5 files changed, 858 insertions(+) create mode 100644 README.md create mode 100644 main.py create mode 100644 model_api.py create mode 100644 model_api_deepspeed.py create mode 100644 model_api_vllm.py diff --git a/README.md b/README.md new file mode 100644 index 0000000..e69de29 diff --git a/main.py b/main.py new file mode 100644 index 0000000..46cee45 --- /dev/null +++ b/main.py @@ -0,0 +1,207 @@ +# 这是一个示例 Python 脚本。 + +# 按 Shift+F10 执行或将其替换为您的代码。 +# 按 双击 Shift 在所有地方搜索类、文件、工具窗口、操作和设置。 +import faiss +import numpy as np +from tqdm import tqdm +from sentence_transformers import SentenceTransformer +import requests +import time +from flask import Flask, jsonify +from flask import request + +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +model = SentenceTransformer('/home/majiahui/project/models-llm/bge-large-zh-v1.5') +propmt_connect = '''我是一名中医,你是一个中医的医生的助理,我的患者有一个症状,症状如下: +{} +根据这些症状,我通过查找资料,{} +请根据上面的这些资料和方子,根据患者的症状帮我开出正确的药方和治疗方案''' + +propmt_connect_ziliao = '''在“{}”资料中,有如下相关内容: +{}''' + + +def dialog_line_parse(url, text): + """ + 将数据输入模型进行分析并输出结果 + :param url: 模型url + :param text: 进入模型的数据 + :return: 模型返回结果 + """ + + response = requests.post( + url, + json=text, + timeout=100000 + ) + if response.status_code == 200: + return response.json() + else: + # logger.error( + # "【{}】 Failed to get a proper response from remote " + # "server. Status Code: {}. Response: {}" + # "".format(url, response.status_code, response.text) + # ) + print("【{}】 Failed to get a proper response from remote " + "server. Status Code: {}. Response: {}" + "".format(url, response.status_code, response.text)) + return {} + + +def shengcehng_array(data): + embs = model.encode(data, normalize_embeddings=True) + return embs + +def Building_vector_database(type, name, data): + data_ndarray = np.empty((0, 1024)) + for sen in data: + data_ndarray = np.concatenate((data_ndarray, shengcehng_array([sen]))) + print("data_ndarray.shape", data_ndarray.shape) + + print("data_ndarray.shape", data_ndarray.shape) + np.save(f'data_np/{name}.npy', data_ndarray) + + + +def ulit_request_file(file, title): + file_name = file.filename + file_name_save = "data_file/{}.txt".format(title) + file.save(file_name_save) + + try: + with open(file_name_save, encoding="gbk") as f: + content = f.read() + except: + with open(file_name_save, encoding="utf-8") as f: + content = f.read() + # elif file_name.split(".")[-1] == "docx": + # content = docx2txt.process(file_name_save) + + content_list = [i for i in content.split("\n")] + + return content_list + + +def main(question, db_type, top): + db_dict = { + "1": "yetianshi" + } + ''' + 定义文件路径 + ''' + + ''' + 加载文件 + ''' + + ''' + 文本分割 + ''' + + ''' + 构建向量数据库 + 1. 正常匹配 + 2. 把文本使用大模型生成一个问题之后再进行匹配 + ''' + + ''' + 根据提问匹配上下文 + ''' + d = 1024 + db_type_list = db_type.split(",") + + paper_list_str = "" + for i in db_type_list: + embs = shengcehng_array([question]) + index = faiss.IndexFlatL2(d) # buid the index + data_np = np.load(f"data_np/{i}.npy") + data_str = open(f"data_file/{i}.txt").read().split("\n") + index.add(data_np) + D, I = index.search(embs, int(top)) + print(I) + + reference_list = [] + for i in I[0]: + reference_list.append(data_str[i]) + + for i,j in enumerate(reference_list): + paper_list_str += "第{}篇\n{}\n".format(str(i+1), j) + + ''' + 构造prompt + ''' + print("paper_list_str", paper_list_str) + propmt_connect_ziliao_input = [] + for i in db_type_list: + propmt_connect_ziliao_input.append(propmt_connect_ziliao.format(i, paper_list_str)) + + propmt_connect_ziliao_input_str = ",".join(propmt_connect_ziliao_input) + propmt_connect_input = propmt_connect.format(question, propmt_connect_ziliao_input_str) + ''' + 生成回答 + ''' + url_predict = "http://192.168.31.74:26000/predict" + url_search = "http://192.168.31.74:26000/search" + + # data = { + # "content": propmt_connect_input + # } + data = { + "content": propmt_connect_input, + "model": "qwq-32", + "top_p": 0.9, + "temperature": 0.6 + } + + res = dialog_line_parse(url_predict, data) + id_ = res["texts"]["id"] + + data = { + "id": id_ + } + + while True: + res = dialog_line_parse(url_search, data) + if res["code"] == 200: + break + else: + time.sleep(1) + spilt_str = "" + think, response = str(res["text"]).split(spilt_str) + return think, response + + +@app.route("/upload_file", methods=["POST"]) +def upload_file(): + print(request.remote_addr) + file = request.files.get('file') + title = request.form.get("title") + data = ulit_request_file(file, title) + Building_vector_database("1", title, data) + return_json = { + "code": 200, + "info": "上传完成" + } + return jsonify(return_json) # 返回结果 + + +@app.route("/search", methods=["POST"]) +def search(): + print(request.remote_addr) + texts = request.json["texts"] + text_type = request.json["text_type"] + top = request.json["top"] + think, response = main(texts, text_type, top) + return_json = { + "code": 200, + "think": think, + "response": response + } + return jsonify(return_json) # 返回结果 + + +if __name__ == "__main__": + app.run(host="0.0.0.0", port=27000, threaded=True, debug=False) diff --git a/model_api.py b/model_api.py new file mode 100644 index 0000000..ed13ca7 --- /dev/null +++ b/model_api.py @@ -0,0 +1,179 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "1,2,3,4" +from transformers import AutoModelForCausalLM, AutoTokenizer +import logging +from threading import Thread +import requests +import redis +import uuid +import time +import json +from flask import Flask, jsonify +from flask import request + +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=17, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +# model config +model_name = "/home/majiahui/project/models-llm/QwQ-32" +model = AutoModelForCausalLM.from_pretrained( + model_name, + torch_dtype="auto", + device_map="auto" +) +tokenizer = AutoTokenizer.from_pretrained(model_name) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + + +def main(prompt): + # prompt = "电视剧《人世间》导演和演员是谁" + messages = [ + {"role": "user", "content": prompt} + ] + text = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True + ) + + model_inputs = tokenizer([text], return_tensors="pt").to(model.device) + + generated_ids = model.generate( + **model_inputs, + max_new_tokens=32768 + ) + generated_ids = [ + output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) + ] + + response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] + response = str(response).split("")[1] + return response + + +def classify(): # 调用模型,设置最大batch_size + while True: + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text + data_dict_path = json.loads(query) + path = data_dict_path['path'] + + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + + query_id = data_dict['id'] + input_text = data_dict["text"] + + output_text = main(input_text) + + return_text = { + "input": input_text, + "output": output_text + } + + load_result_path = "./new_data_logs/{}.json".format(query_id) + print("query_id: ", query_id) + print("load_result_path: ", load_result_path) + + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(query_id, load_result_path, 86400) + # log.log('start at', + # 'query_id:{},load_result_path:{},return_text:{}, debug_id_1:{}, debug_id_2:{}, debug_id_3:{}'.format( + # query_id, load_result_path, return_text) + + +@app.route("/predict", methods=["POST"]) +def predict(): + print(request.remote_addr) + content = request.json["content"] + + id_ = str(uuid.uuid1()) # 为query生成唯一标识 + print("uuid: ", id_) + d = {'id': id_, 'text': content} # 绑定文本和query id + + load_request_path = './request_data_logs/{}.json'.format(id_) + with open(load_request_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(d, f2, ensure_ascii=False, indent=4) + redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis + redis_.sadd(db_key_querying, id_) + return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 200} + print("ok") + return jsonify(return_text) # 返回结果 + + +@app.route("/search", methods=["POST"]) +def search(): + id_ = request.json['id'] # 获取用户query中的文本 例如"I love you" + result = redis_.get(id_) # 获取该query的模型结果 + if result is not None: + # redis_.delete(id_) + result_path = result.decode('UTF-8') + with open(result_path, encoding='utf8') as f1: + # 加载文件的对象 + result_dict = json.load(f1) + texts = result_dict["output"] + result_text = {'code': 200, 'text': texts, 'probabilities': None} + else: + querying_list = list(redis_.smembers("querying")) + querying_set = set() + for i in querying_list: + querying_set.add(i.decode()) + + querying_bool = False + if id_ in querying_set: + querying_bool = True + + query_list_json = redis_.lrange(db_key_query, 0, -1) + query_set_ids = set() + for i in query_list_json: + data_dict = json.loads(i) + query_id = data_dict['id'] + query_set_ids.add(query_id) + + query_bool = False + if id_ in query_set_ids: + query_bool = True + + if querying_bool == True and query_bool == True: + result_text = {'code': "201", 'text': "", 'probabilities': None} + elif querying_bool == True and query_bool == False: + result_text = {'code': "202", 'text': "", 'probabilities': None} + else: + result_text = {'code': "203", 'text': "", 'probabilities': None} + load_request_path = './request_data_logs_203/{}.json'.format(id_) + with open(load_request_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(result_text, f2, ensure_ascii=False, indent=4) + + return jsonify(result_text) # 返回结果 + + +t = Thread(target=classify) +t.start() + +if __name__ == "__main__": + logging.basicConfig(level=logging.DEBUG, # 控制台打印的日志级别 + filename='rewrite.log', + filemode='a', ##模式,有w和a,w就是写模式,每次都会重新写日志,覆盖之前的日志 + # a是追加模式,默认如果不写的话,就是追加模式 + format= + '%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s' + # 日志格式 + ) + app.run(host="0.0.0.0", port=26000, threaded=True, debug=False) diff --git a/model_api_deepspeed.py b/model_api_deepspeed.py new file mode 100644 index 0000000..54589ba --- /dev/null +++ b/model_api_deepspeed.py @@ -0,0 +1,169 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "1,2,3,4" +from transformers import AutoModelForCausalLM, AutoTokenizer +import logging +from threading import Thread +import requests +import redis +import uuid +import time +import json +from flask import Flask, jsonify +from flask import request +import deepspeed + +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=17, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +# model config +model_name = "/home/majiahui/project/models-llm/QwQ-32" + +ds_config = { + "dtype": "fp16", + "tensor_parallel": { + "tp_size": 4 + } +} + +model = AutoModelForCausalLM.from_pretrained(model_name) +tokenizer = AutoTokenizer.from_pretrained(model_name) +model = deepspeed.init_inference(model, config=ds_config) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_result = 'result' +batch_size = 15 + + +def main(prompt): + # prompt = "电视剧《人世间》导演和演员是谁" + inputs = tokenizer(prompt, return_tensors="pt").to("cuda") + output = model.generate(**inputs) + response = tokenizer.decode(output[0]) + return response + + +def classify(): # 调用模型,设置最大batch_size + while True: + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text + data_dict_path = json.loads(query) + path = data_dict_path['path'] + + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + + query_id = data_dict['id'] + input_text = data_dict["text"] + + output_text = main(input_text) + + return_text = { + "input": input_text, + "output": output_text + } + + load_result_path = "./new_data_logs/{}.json".format(query_id) + print("query_id: ", query_id) + print("load_result_path: ", load_result_path) + + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(query_id, load_result_path, 86400) + # log.log('start at', + # 'query_id:{},load_result_path:{},return_text:{}, debug_id_1:{}, debug_id_2:{}, debug_id_3:{}'.format( + # query_id, load_result_path, return_text) + + +@app.route("/predict", methods=["POST"]) +def predict(): + print(request.remote_addr) + content = request.json["content"] + + id_ = str(uuid.uuid1()) # 为query生成唯一标识 + print("uuid: ", id_) + d = {'id': id_, 'text': content} # 绑定文本和query id + + load_request_path = './request_data_logs/{}.json'.format(id_) + with open(load_request_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(d, f2, ensure_ascii=False, indent=4) + redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis + redis_.sadd(db_key_querying, id_) + return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 200} + print("ok") + return jsonify(return_text) # 返回结果 + + +@app.route("/search", methods=["POST"]) +def search(): + id_ = request.json['id'] # 获取用户query中的文本 例如"I love you" + result = redis_.get(id_) # 获取该query的模型结果 + if result is not None: + # redis_.delete(id_) + result_path = result.decode('UTF-8') + with open(result_path, encoding='utf8') as f1: + # 加载文件的对象 + result_dict = json.load(f1) + texts = result_dict["output"] + result_text = {'code': 200, 'text': texts, 'probabilities': None} + else: + querying_list = list(redis_.smembers("querying")) + querying_set = set() + for i in querying_list: + querying_set.add(i.decode()) + + querying_bool = False + if id_ in querying_set: + querying_bool = True + + query_list_json = redis_.lrange(db_key_query, 0, -1) + query_set_ids = set() + for i in query_list_json: + data_dict = json.loads(i) + query_id = data_dict['id'] + query_set_ids.add(query_id) + + query_bool = False + if id_ in query_set_ids: + query_bool = True + + if querying_bool == True and query_bool == True: + result_text = {'code': "201", 'text': "", 'probabilities': None} + elif querying_bool == True and query_bool == False: + result_text = {'code': "202", 'text': "", 'probabilities': None} + else: + result_text = {'code': "203", 'text': "", 'probabilities': None} + load_request_path = './request_data_logs_203/{}.json'.format(id_) + with open(load_request_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(result_text, f2, ensure_ascii=False, indent=4) + + return jsonify(result_text) # 返回结果 + + +t = Thread(target=classify) +t.start() + +if __name__ == "__main__": + logging.basicConfig(level=logging.DEBUG, # 控制台打印的日志级别 + filename='rewrite.log', + filemode='a', ##模式,有w和a,w就是写模式,每次都会重新写日志,覆盖之前的日志 + # a是追加模式,默认如果不写的话,就是追加模式 + format= + '%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s' + # 日志格式 + ) + app.run(host="0.0.0.0", port=26000, threaded=True, debug=False) + + diff --git a/model_api_vllm.py b/model_api_vllm.py new file mode 100644 index 0000000..b4cbc41 --- /dev/null +++ b/model_api_vllm.py @@ -0,0 +1,303 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "1,2,3,4" +import argparse +from typing import List, Tuple +from threading import Thread +from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams +from transformers import AutoTokenizer +# from vllm.utils import FlexibleArgumentParser +from flask import Flask, jsonify +from flask import request +import redis +import time +import json +import uuid + + +# http接口服务 +# app = FastAPI() +app = Flask(__name__) +app.config["JSON_AS_ASCII"] = False + +pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=17, password="zhicheng123*") +redis_ = redis.Redis(connection_pool=pool, decode_responses=True) + +db_key_query = 'query' +db_key_querying = 'querying' +db_key_queryset = 'queryset' +db_key_result = 'result' +db_key_error = 'error' +batch_size = 2 +tokenizer = AutoTokenizer.from_pretrained("/home/majiahui/project/models-llm/QwQ-32") + + +def smtp_f(name): + # 在下面的代码行中使用断点来调试脚本。 + import smtplib + from email.mime.text import MIMEText + from email.header import Header + + sender = '838878981@qq.com' # 发送邮箱 + receivers = ['838878981@qq.com'] # 接收邮箱 + auth_code = "jfqtutaiwrtdbcge" # 授权码 + + message = MIMEText('基础大模型出现错误,紧急', 'plain', 'utf-8') + message['From'] = Header("Sender<%s>" % sender) # 发送者 + message['To'] = Header("Receiver<%s>" % receivers[0]) # 接收者 + + subject = name + message['Subject'] = Header(subject, 'utf-8') + + try: + server = smtplib.SMTP_SSL('smtp.qq.com', 465) + server.login(sender, auth_code) + server.sendmail(sender, receivers, message.as_string()) + print("邮件发送成功") + server.close() + except smtplib.SMTPException: + print("Error: 无法发送邮件") + +class log: + def __init__(self): + pass + + def log(*args, **kwargs): + format = '%Y/%m/%d-%H:%M:%S' + format_h = '%Y-%m-%d' + value = time.localtime(int(time.time())) + dt = time.strftime(format, value) + dt_log_file = time.strftime(format_h, value) + log_file = 'log_file/access-%s' % dt_log_file + ".log" + if not os.path.exists(log_file): + with open(os.path.join(log_file), 'w', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + else: + with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: + print(dt, *args, file=f, **kwargs) + + +def initialize_engine() -> LLMEngine: + """Initialize the LLMEngine from the command line arguments.""" + # model_dir = "/home/majiahui/project/models-llm/Qwen-0_5B-Chat" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b_train_11_prompt_mistral_gpt_xiaobiaot_real_paper_2" + # model_dir = "/home/majiahui/project/models-llm/Qwen2.5-7B-Instruct-1M" + # model_dir = "/home/majiahui/project/models-llm/openbuddy-qwen2.5llamaify-7b-v23.1-200k" + model_dir = "/home/majiahui/project/models-llm/QwQ-32" + args = EngineArgs(model_dir) + args.max_num_seqs = 2 # batch最大20条样本 + # args.gpu_memory_utilization = 0.8 + args.tensor_parallel_size = 4 + args.max_model_len=8192 + # 加载模型 + return LLMEngine.from_engine_args(args) + +engine = initialize_engine() + + +def create_test_prompts(prompt_texts, query_ids, sampling_params_list) -> List[Tuple[str,str, SamplingParams]]: + """Create a list of test prompts with their sampling parameters.""" + + return_list = [] + + for i,j,k in zip(prompt_texts, query_ids, sampling_params_list): + return_list.append((i, j, k)) + return return_list + + +def process_requests(engine: LLMEngine, + test_prompts: List[Tuple[str, str, SamplingParams]]): + """Continuously process a list of prompts and handle the outputs.""" + + return_list = [] + while test_prompts or engine.has_unfinished_requests(): + if test_prompts: + prompt, query_id, sampling_params = test_prompts.pop(0) + engine.add_request(str(query_id), prompt, sampling_params) + + request_outputs: List[RequestOutput] = engine.step() + + for request_output in request_outputs: + if request_output.finished: + return_list.append(request_output) + return return_list + + +def main(prompt_texts, query_ids, sampling_params_list): + """Main function that sets up and runs the prompt processing.""" + + test_prompts = create_test_prompts(prompt_texts, query_ids, sampling_params_list) + return process_requests(engine, test_prompts) + + +def classify(batch_size): # 调用模型,设置最大batch_size + while True: + texts = [] + query_ids = [] + sampling_params_list = [] + if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 + time.sleep(2) + continue + + # for i in range(min(redis_.llen(db_key_query), batch_size)): + while True: + query = redis_.lpop(db_key_query) # 获取query的text + if query == None: + break + + query = query.decode('UTF-8') + data_dict_path = json.loads(query) + + path = data_dict_path['path'] + with open(path, encoding='utf8') as f1: + # 加载文件的对象 + data_dict = json.load(f1) + # query_ids.append(json.loads(query)['id']) + # texts.append(json.loads(query)['text']) # 拼接若干text 为batch + query_id = data_dict['id'] + print("query_id", query_id) + text = data_dict["text"] + model = data_dict["model"] + top_p = data_dict["top_p"] + temperature = data_dict["temperature"] + presence_penalty = 1.1 + max_tokens = 8192 + query_ids.append(query_id) + messages = [ + {"role": "user", "content": text} + ] + text = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True + ) + texts.append(text) + # sampling_params = SamplingParams(temperature=0.3, top_p=0.5, stop="<|end|>", presence_penalty=1.1, max_tokens=8192) + sampling_params_list.append(SamplingParams( + temperature=temperature, + top_p=top_p, + stop="<|im_end|>", + presence_penalty=presence_penalty, + max_tokens=max_tokens + )) + if len(texts) == batch_size: + break + + print("texts", len(texts)) + print("query_ids", len(query_ids)) + print("sampling_params_list", len(sampling_params_list)) + outputs = main(texts, query_ids, sampling_params_list) + + print("预测完成") + generated_text_dict = {} + print("outputs", len(outputs)) + for i, output in enumerate(outputs): + index = output.request_id + print(index) + generated_text = output.outputs[0].text + generated_text_dict[index] = generated_text + + print(generated_text_dict) + for id_, output in generated_text_dict.items(): + + return_text = {"texts": output, "probabilities": None, "status_code": 200} + load_result_path = "./new_data_logs/{}.json".format(id_) + with open(load_result_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(return_text, f2, ensure_ascii=False, indent=4) + redis_.set(id_, load_result_path, 86400) + # redis_.set(id_, load_result_path, 30) + redis_.srem(db_key_querying, id_) + log.log('start at', + 'query_id:{},load_result_path:{},return_text:{}'.format( + id_, load_result_path, return_text)) + + +@app.route("/predict", methods=["POST"]) +def predict(): + content = request.json["content"] # 获取用户query中的文本 例如"I love you" + model = request.json["model"] + top_p = request.json["top_p"] + temperature = request.json["temperature"] + id_ = str(uuid.uuid1()) # 为query生成唯一标识 + print("uuid: ", uuid) + d = {'id': id_, 'text': content, 'model': model, 'top_p': top_p,'temperature': temperature} # 绑定文本和query id + print(d) + try: + load_request_path = './request_data_logs/{}.json'.format(id_) + with open(load_request_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(d, f2, ensure_ascii=False, indent=4) + redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis + redis_.sadd(db_key_querying, id_) + redis_.sadd(db_key_queryset, id_) + return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 200} + except: + return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 400} + smtp_f("vllm-main-paper") + return jsonify(return_text) # 返回结果 + + +@app.route("/search", methods=["POST"]) +def search(): + id_ = request.json['id'] # 获取用户query中的文本 例如"I love you" + result = redis_.get(id_) # 获取该query的模型结果 + try: + if result is not None: + result_path = result.decode('UTF-8') + with open(result_path, encoding='utf8') as f1: + # 加载文件的对象 + result_dict = json.load(f1) + code = result_dict["status_code"] + texts = result_dict["texts"] + probabilities = result_dict["probabilities"] + if str(code) == 400: + redis_.rpush(db_key_error, json.dumps({"id": id_})) + return False + result_text = {'code': code, 'text': texts, 'probabilities': probabilities} + else: + querying_list = list(redis_.smembers(db_key_querying)) + querying_set = set() + for i in querying_list: + querying_set.add(i.decode()) + + querying_bool = False + if id_ in querying_set: + querying_bool = True + + query_list_json = redis_.lrange(db_key_query, 0, -1) + query_set_ids = set() + for i in query_list_json: + data_dict = json.loads(i) + query_id = data_dict['id'] + query_set_ids.add(query_id) + + query_bool = False + if id_ in query_set_ids: + query_bool = True + + if querying_bool == True and query_bool == True: + result_text = {'code': "201", 'text': "", 'probabilities': None} + elif querying_bool == True and query_bool == False: + result_text = {'code': "202", 'text': "", 'probabilities': None} + else: + result_text = {'code': "203", 'text': "", 'probabilities': None} + load_request_path = './request_data_logs_203/{}.json'.format(id_) + with open(load_request_path, 'w', encoding='utf8') as f2: + # ensure_ascii=False才能输入中文,否则是Unicode字符 + # indent=2 JSON数据的缩进,美观 + json.dump(result_text, f2, ensure_ascii=False, indent=4) + except: + smtp_f("vllm-main") + result_text = {'code': "400", 'text': "", 'probabilities': None} + return jsonify(result_text) # 返回结果 + + +t = Thread(target=classify, args=(batch_size,)) +t.start() + + +if __name__ == "__main__": + app.run(debug=False, host='0.0.0.0', port=26000) \ No newline at end of file