Browse Source

增加测试scokt请求,并更改流程

div_测试
majiahui@haimaqingfan.com 1 week ago
parent
commit
2c91b46a66
  1. 184
      main.py
  2. 2
      main_scokt.py

184
main.py

@ -3,6 +3,7 @@
# 按 Shift+F10 执行或将其替换为您的代码。
# 按 双击 Shift 在所有地方搜索类、文件、工具窗口、操作和设置。
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import faiss
import numpy as np
from tqdm import tqdm
@ -15,20 +16,12 @@ from flask_cors import CORS
import pandas as pd
import concurrent.futures
import json
from threading import Thread
import redis
app = Flask(__name__)
CORS(app)
app.config["JSON_AS_ASCII"] = False
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=1, password="zhicheng123*")
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
db_key_query = 'query'
db_key_querying = 'querying'
batch_size = 32
openai_api_key = "token-abc123"
openai_api_base = "http://127.0.0.1:12011/v1"
@ -157,6 +150,17 @@ def delete_data(title, data_id):
df.loc[df["ID"] == data_id, "有效"] = False
df.to_csv(csv_path, sep="\t", index=False)
# 更新索引标记
index_path = f"data_np/{title}_index.json"
if os.path.exists(index_path):
with open(index_path, "r+") as f:
index_data = json.load(f)
if data_id in index_data:
index_data[data_id]["valid"] = False
f.seek(0)
json.dump(index_data, f)
f.truncate()
def check_file_exists(file_path):
"""
@ -177,20 +181,20 @@ def ulit_request_file(new_id, sentence, title):
# 初始化或读取CSV文件
if os.path.exists(file_name_res_save):
df = pd.read_csv(file_name_res_save, sep="\t")
# # 检查是否已存在相同正文
# if sentence in df["正文"].values:
# print("正文已存在,跳过处理")
# return df
# 检查是否已存在相同正文
if sentence in df["正文"].values:
print("正文已存在,跳过处理")
return df
else:
df = pd.DataFrame(columns=["ID", "正文", "总结", "有效", "已向量化", "向量"])
df = pd.DataFrame(columns=["ID", "正文", "总结", "有效", "已向量化"])
# 添加新数据(生成唯一ID)
new_row = {
"ID": new_id,
"ID": str(new_id),
"正文": sentence,
"总结": None,
"有效": True,
"已向量化": False,
"向量": None,
"已向量化": False
}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
@ -219,19 +223,9 @@ def ulit_request_file(new_id, sentence, title):
summary = result['choices'][0]['message']['content']
df.at[idx, "总结"] = summary
# df.loc[df.index[2], "总结"] = None
# df.loc[df.index[3], "总结"] = None
# df.loc[df.index[4], "总结"] = None
# df.loc[df.index[5], "总结"] = None
df_ce = df[(df["有效"] == True) & (df["总结"].notnull())]
for idx in df_ce.index:
a = shengcehng_array([df_ce.at[idx, "总结"]])
df.at[idx, "向量"] = json.dumps(a[0].tolist())
df.at[idx, "已向量化"] = True
# 保存更新后的CSV
df.to_csv(file_name_res_save, sep="\t", index=False)
return df
def main(question, title, top):
db_dict = {
@ -267,28 +261,20 @@ def main(question, title, top):
index = faiss.IndexFlatIP(d) # buid the index
# 查找向量
file_name_res_save = f"data_file_res/{title_dan}.csv"
df = pd.read_csv(file_name_res_save, sep="\t", encoding="utf-8")
df_ce = df[df["有效"] == True]
vector_path = f"data_np/{title_dan}.npy"
vectors = np.load(vector_path)
print(df_ce.shape)
data_np = []
for idx in df_ce.index:
data_np.append(json.loads(df.loc[idx, "向量"]))
vectors = np.array(data_np, dtype=object)
# data_str = pd.read_csv(file_name_res_save, sep="\t", encoding="utf-8").values.tolist()
data_str = pd.read_csv(f"data_file/{title_dan}.csv", sep="\t", encoding="utf-8").values.tolist()
index.add(vectors)
D, I = index.search(embs, int(top))
print(I)
reference_list = []
for i,j in zip(I[0], D[0]):
reference_list.append([df_ce.loc[df_ce.index[i], "正文"], j])
reference_list.append([data_str[i], j])
for i,j in enumerate(reference_list):
paper_list_str += "{}\n{},此篇文章跟问题的相关度为{}%\n".format(str(i+1), j[0], j[1])
paper_list_str += "{}\n{},此篇文章跟问题的相关度为{}%\n".format(str(i+1), j[0][0], j[1])
'''
@ -306,60 +292,6 @@ def main(question, title, top):
'''
return model_generate_stream(propmt_connect_input)
def classify(): # 调用模型,设置最大batch_size
while True:
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
time.sleep(3)
continue
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
data_dict = json.loads(query)
if data_dict["state"] == "1":
new_id = data_dict["id"]
sentence = data_dict["sentence"]
title = data_dict["title"]
ulit_request_file(new_id, sentence, title)
def add_dan_data(new_id, sentence, title):
file_name_res_save = f"data_file_res/{title}.csv"
# 初始化或读取CSV文件
df = pd.read_csv(file_name_res_save, sep="\t")
if sentence in df["正文"].values:
print("正文已存在,跳过处理")
return False
else:
ulit_request_file(new_id, sentence, title)
return True
def updata_dan_data(new_id, sentence, title):
file_name_res_save = f"data_file_res/{title}.csv"
df = pd.read_csv(file_name_res_save, sep="\t")
# 筛选需要处理的记录
propmt_connect = {
"model": "gpt-4-turbo",
"messages": [{
"role": "user",
"content": f"{sentence}\n以上这条中可能包含了一些病情或者症状,请帮我归纳这条中所对应的病情或者症状是哪些,总结出来,不需要很长,简单归纳即可,直接输出症状或者病情,可以包含一些形容词来辅助描述,不需要有辅助词汇"
}],
"top_p": 0.9,
"temperature": 0.6
}
result = dialog_line_parse(propmt_connect)
print(result)
summary = result['choices'][0]['message']['content']
# 更新总结,正文字段
df.loc[df["ID"] == new_id, "总结"] = summary
df.loc[df["ID"] == new_id, "正文"] = sentence
a = shengcehng_array([summary])
df.loc[df["ID"] == new_id, "向量"] = json.dumps(a[0].tolist())
df.to_csv(file_name_res_save, sep="\t", index=False)
def model_generate_stream(prompt):
messages = [
@ -396,13 +328,13 @@ def model_generate_stream(prompt):
yield content
@app.route("/upload_file", methods=["POST"])
def upload_file():
@app.route("/upload_file_check", methods=["POST"])
def upload_file_check():
print(request.remote_addr)
sentence = request.json['sentence']
title = request.json["title"]
new_id = request.json["id"]
state = request.json["state"] # 1: 批量新增 2:单条新增 3:单挑修改 4: 单条删除
sentence = request.form.get('sentence')
title = request.form.get("title")
new_id = request.form.get("id")
state = request.form.get("state")
'''
{
"1": "csv",
@ -413,28 +345,12 @@ def upload_file():
'''
state_res = ""
if state == "1":
redis_.rpush(db_key_query, json.dumps({
"id": new_id,
"sentence": sentence,
"state": state,
"title": title
})) # 加入redis
state_res = "上传完成,正在排队处理数据"
df = ulit_request_file(new_id, sentence, title)
Building_vector_database(title, df)
state_res = "上传完成"
elif state == "2":
info_bool = add_dan_data(new_id, sentence, title)
if info_bool == True:
state_res = "上传完成"
else:
state_res = "上传失败,库中有重复数据"
elif state == "3":
updata_dan_data(new_id, sentence, title)
state_res = "修改完成"
elif state == "4":
delete_data(title, new_id)
state_res = "删除完成"
return_json = {
"code": 200,
"info": state_res
@ -442,30 +358,6 @@ def upload_file():
return jsonify(return_json) # 返回结果
@app.route("/upload_file_check", methods=["POST"])
def upload_file_check():
print(request.remote_addr)
new_id = request.json["id"]
data_list = redis_.lrange(db_key_query, 0, -1) # 0 表示开始,-1 表示结束(全部)
# 解析 JSON 数据
data_list_id_ = []
for item in data_list:
data = json.loads(item.decode("utf-8")) # Redis 返回的是 bytes,需要 decode + json.loads
data_list_id_.append(data["id"])
if new_id in data_list_id_:
return_json = {
"code": 200,
"info": "上传中"
}
return jsonify(return_json)
else:
return_json = {
"code": 200,
"info": "已入库"
}
return jsonify(return_json)
@app.route("/search", methods=["POST"])
def search():
print(request.remote_addr)
@ -475,8 +367,6 @@ def search():
response = main(texts, title, top)
return Response(response, mimetype='text/plain; charset=utf-8') # 返回结果
t = Thread(target=classify)
t.start()
if __name__ == "__main__":
app.run(host="0.0.0.0", port=27000, threaded=True, debug=False)

2
main_scokt.py

@ -154,6 +154,8 @@ def main(question, title, top):
reference_list = []
for i, j in zip(I[0], D[0]):
print("i", i)
print("data_str[i]", data_str[i])
reference_list.append([data_str[i], j])
for i, j in enumerate(reference_list):

Loading…
Cancel
Save