import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" import numpy as np import faiss import json from sentence_transformers import SentenceTransformer d = 768 # dimension zidonghua = np.load('zidonghua.npy') model = SentenceTransformer('Dmeta-embedding-zh') data = [] with open("data.json", encoding="utf-8") as f: for i in f.readlines(): a = json.loads(i) data.append(a) mubiaoliebie = "自动化技术" data_prompt = [] for i in data: if str(i[1]) == "nan": continue leibie_list = i[1].split(";") for leibie in leibie_list: if leibie == mubiaoliebie: data_prompt.append("标题:“{}”,摘要:“{}”".format(i[0], i[2])) # faiss.write_index(index, 'index.ivf') index = faiss.read_index('zidonghua.ivf') index.add(zidonghua) # add may be a bit slower as well # D, I = index.search(xq, k) # actual search # print(I[-5:]) # neighbors of the 5 last queries print("=======================================") index.nprobe = 2 # default nprobe is 1, try a few more k = 4 biaoti = "工业机器人视觉导航系统的设计与实现" zhaiyoa = "本研究致力于设计和实现工业机器人视觉导航系统,旨在提高工业生产中机器人的自主导航和定位能力。首先,通过综合考虑视觉传感器、定位算法和控制策略,设计了一种高效的机器人视觉导航系统框架。其次,利用深度学习技术对环境中的关键特征进行识别和定位,实现了机器人在复杂工作场景下的精确定位和路径规划。通过实验验证,本系统在提高机器人工作效率、减少人工干预以及降低操作误差等方面取得了显著的成果。因此,本研究为工业机器人在生产领域的应用提供了重要的技术支持,具有一定的实用和推广价值。" prompt = "标题:“{}”,摘要:“{}”".format(biaoti, zhaiyoa) embs = model.encode([prompt], normalize_embeddings=True) D, I = index.search(embs, k) print(I) for i in I[0]: print(data_prompt[i])