You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
263 lines
9.4 KiB
263 lines
9.4 KiB
![]()
1 year ago
|
from docx import Document
|
||
|
import os
|
||
|
os.environ['ALL_PROXY'] = 'http://127.0.0.1:10809'
|
||
|
import docx
|
||
|
import json
|
||
|
import re
|
||
|
from docx.document import Document
|
||
|
from docx.oxml.table import CT_Tbl
|
||
|
from docx.oxml.text.paragraph import CT_P
|
||
|
from docx.table import _Cell, Table
|
||
|
from docx.text.paragraph import Paragraph
|
||
|
import requests
|
||
|
import random
|
||
|
|
||
|
fileName = "data/基于Python的电影网站设计_范文.docx"
|
||
|
pantten_mulu= '目录(.*?)致谢'
|
||
|
pantten_xiaobiaoti= "{}(.*?){}"
|
||
|
pantten_yijibiaoti = '^([一二三四五六七八九])、(.*)'
|
||
|
pantten_yijibiaoti_content = '^[一二三四五六七八九]、(.*)'
|
||
|
pantten_erjibiaoti = '^[0-9](\.[0-9]\d*){1}\s{1,}?.*$'
|
||
|
pantten_erjibiaoti_content = '^[0-9]\.[0-9]\d*{1}\s{1,}?(.*)$'
|
||
|
pantten_content_tiaoshu = '[0-9]\.{1}\s{0,}?(.*)'
|
||
|
|
||
|
prompt_two_title_min_max = "为论文题目“{}”生成中文目录,要求只有一级标题,二级标题,一级标题使用中文数字 例如一、xxx;二级标题使用阿拉伯数字 例如1.1 xxx;一级标题生成{}个;每个一级标题包含{}-{}个二级标题"
|
||
|
prompt_two_title_not_min_max = "为论文题目“{}”生成中文目录,要求只有一级标题,二级标题,一级标题使用中文数字 例如一、xxx;二级标题使用阿拉伯数字 例如1.1 xxx;一级标题生成{}个;每个一级标题包含{}个二级标题"
|
||
|
|
||
|
|
||
|
pantten_title = "为论文题目“(.*?)”生成中文目录"
|
||
|
pantten_xiaobiaoti_geshu = "每个一级标题包含(.*?)个"
|
||
|
pantten_dabiaoti_geshu = "一级标题生成(.*?)个"
|
||
|
|
||
|
mulusuojian = "请问把以下目录缩减成只有4个一级标题作为ppt的题目,请问留下原始目录中的哪4个一级标题最合适,一级标题必须在原始目录中\n{}\n"
|
||
|
|
||
|
|
||
|
self_api = "http://192.168.31.149:12004/predict"
|
||
|
gpt_api = "https://api.openai.com/v1/chat/completions"
|
||
|
|
||
|
|
||
|
def iter_block_items(parent):
|
||
|
"""
|
||
|
Yield each paragraph and table child within *parent*, in document order.
|
||
|
Each returned value is an instance of either Table or Paragraph. *parent*
|
||
|
would most commonly be a reference to a main Document object, but
|
||
|
also works for a _Cell object, which itself can contain paragraphs and tables.
|
||
|
"""
|
||
|
if isinstance(parent, Document):
|
||
|
parent_elm = parent.element.body
|
||
|
elif isinstance(parent, _Cell):
|
||
|
parent_elm = parent._tc
|
||
|
else:
|
||
|
raise ValueError("something's not right")
|
||
|
|
||
|
for child in parent_elm.iterchildren():
|
||
|
if isinstance(child, CT_P):
|
||
|
yield Paragraph(child, parent)
|
||
|
elif isinstance(child, CT_Tbl):
|
||
|
yield Table(child, parent)
|
||
|
|
||
|
|
||
|
def read_table(table):
|
||
|
return [[cell.text for cell in row.cells] for row in table.rows]
|
||
|
|
||
|
|
||
|
def read_word(word_path):
|
||
|
|
||
|
paper_text = []
|
||
|
doc = docx.Document(word_path)
|
||
|
for block in iter_block_items(doc):
|
||
|
if isinstance(block, Paragraph):
|
||
|
paper_text.append(block.text)
|
||
|
elif isinstance(block, Table):
|
||
|
table_list = read_table(block)
|
||
|
table_list_new = []
|
||
|
for row in table_list:
|
||
|
table_list_new.append("<td>" + "</td>\n<td>".join(row) + "</td>")
|
||
|
table_str = "\n<tr>\n" + "\n</tr>\n<tr>\n".join(table_list_new) + "\n</tr>\n"
|
||
|
table_str = "<tbStart>\n<table>" + table_str + "</table>\n\n<tbEnd>"
|
||
|
paper_text.append(table_str)
|
||
|
paper_text = "\n".join(paper_text)
|
||
|
return paper_text
|
||
|
|
||
|
|
||
|
def getText(fileName):
|
||
|
doc = docx.Document(fileName)
|
||
|
TextList = []
|
||
|
for paragraph in doc.paragraphs:
|
||
|
TextList.append(paragraph.text)
|
||
|
|
||
|
return '\n'.join(TextList)
|
||
|
|
||
|
|
||
|
def request_selfmodel_api(prompt):
|
||
|
print(prompt)
|
||
|
url = "http://192.168.31.149:12004/predict"
|
||
|
data = {
|
||
|
"model": "gpt-4-turbo-preview",
|
||
|
"messages": [
|
||
|
{"role": "user", "content": prompt}
|
||
|
],
|
||
|
"top_p": 0.7,
|
||
|
"temperature": 0.95
|
||
|
}
|
||
|
response = requests.post(
|
||
|
url,
|
||
|
json=data,
|
||
|
timeout=100000
|
||
|
)
|
||
|
|
||
|
return response.json()
|
||
|
|
||
|
|
||
|
def request_chatgpt_api(prompt):
|
||
|
OPENAI_API_KEY = "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"
|
||
|
url = "https://api.openai.com/v1/chat/completions"
|
||
|
# url = "https://one.aiskt.com"
|
||
|
headers = {
|
||
|
"Content-Type": "application/json",
|
||
|
"Authorization": f"Bearer {OPENAI_API_KEY}"
|
||
|
}
|
||
|
data = {
|
||
|
"model": "gpt-4-turbo-preview",
|
||
|
"messages": [
|
||
|
{"role": "user", "content": prompt}
|
||
|
],
|
||
|
"top_p": 0.7,
|
||
|
"temperature": 0.95
|
||
|
}
|
||
|
response = requests.post(url,
|
||
|
headers=headers,
|
||
|
data=json.dumps(data),
|
||
|
timeout=1200)
|
||
|
|
||
|
return response.json()
|
||
|
|
||
|
|
||
|
def yanzhengyijibiaoti(mulu, res):
|
||
|
'''
|
||
|
判断生成的大标题是否可用
|
||
|
:param mulu:
|
||
|
:param res:
|
||
|
:return:
|
||
|
'''
|
||
|
|
||
|
mulu_list = str(mulu).split("\n")
|
||
|
|
||
|
dabiaoti_list = []
|
||
|
dabiaoti_res_list = []
|
||
|
for i in mulu_list:
|
||
|
res_re = re.findall(pantten_yijibiaoti, i)
|
||
|
if res_re != []:
|
||
|
dabiaoti_list.append(re.findall(pantten_yijibiaoti, i)[0])
|
||
|
for i in dabiaoti_list:
|
||
|
if i[1].strip() in res:
|
||
|
dabiaoti_res_list.append("、".join(i))
|
||
|
|
||
|
if len(dabiaoti_res_list) == 4:
|
||
|
return_bool = True
|
||
|
else:
|
||
|
return_bool = False
|
||
|
|
||
|
return return_bool, dabiaoti_res_list
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
text_1 = json.dumps(read_word(fileName),ensure_ascii=False)
|
||
|
print(text_1)
|
||
|
mulu_str = re.findall(pantten_mulu, text_1)[0]
|
||
|
print(mulu_str)
|
||
|
mulu_list_xuhao = str(mulu_str).split("\\n")
|
||
|
|
||
|
mulu_list = []
|
||
|
for i in mulu_list_xuhao:
|
||
|
if i != "":
|
||
|
mulu_list.append(i.split("\\t")[0])
|
||
|
|
||
|
mulu_list.append("致谢")
|
||
|
|
||
|
print(mulu_list)
|
||
|
content_list = []
|
||
|
|
||
|
yijibiaoti = ""
|
||
|
paper_content = {}
|
||
|
for i in range(len(mulu_list) -1):
|
||
|
title = mulu_list[i].strip(" ").strip("\\n")
|
||
|
content = str(re.findall(pantten_xiaobiaoti.format(mulu_list[i], mulu_list[i+1]), text_1)[1]).strip(" ").strip("\\n")
|
||
|
# print(title)
|
||
|
# print(content)
|
||
|
|
||
|
yijibiaoti_res = re.findall(pantten_yijibiaoti, title)
|
||
|
erjibiaoti_res = re.findall(pantten_erjibiaoti, title)
|
||
|
if yijibiaoti_res != []:
|
||
|
# title = "、".join([yijibiaoti_res[0][1], yijibiaoti_res[0][1].strip()])
|
||
|
paper_content[title] = {}
|
||
|
yijibiaoti = title
|
||
|
continue
|
||
|
|
||
|
elif erjibiaoti_res != []:
|
||
|
paper_content[yijibiaoti][title] = content.replace("\\n", "\n")
|
||
|
|
||
|
else:
|
||
|
paper_content[yijibiaoti][title] += "\n".join(title + content)
|
||
|
|
||
|
|
||
|
while True:
|
||
|
mulu_str = "\n".join(mulu_list[:-1])
|
||
|
prompt = f'请问把以下目录缩减成只有4个一级标题作为ppt的题目,请问留下原始目录中的哪4个一级标题最合适,一级标题必须在原始目录中\n{mulu_str}\n'
|
||
|
# try:
|
||
|
# res = request_chatgpt_api(prompt)['choices'][0]['message']['content']
|
||
|
# except:
|
||
|
# continue
|
||
|
res = '''根据您提供的目录内容,如果要将其缩减为只包含4个一级标题的PPT题目,建议选择以下四个一级标题,因为它们分别代表了研究的引入、理论框架、实际应用与实践,以及未来展望,从而形成了一个完整的研究过程和内容框架:
|
||
|
|
||
|
1. 一、绪论
|
||
|
2. 二、电影网站设计的基本概念
|
||
|
3. 三、Python在电影网站设计中的应用
|
||
|
4. 五、电影网站设计的实践与展望
|
||
|
|
||
|
这样的选择既涵盖了研究的背景、目的与意义(绪论),也包括了研究的理论基础(电影网站设计的基本概念),以及研究的实际操作和技术实现(Python在电影网站设计中的应用),最后还有对项目实践经验的总结和对未来发展的展望(电影网站设计的实践与展望)。这四个部分共同构成了一个完整的研究报告或项目介绍的框架,能够全面展示电影网站设计项目的各个方面。
|
||
|
'''
|
||
|
|
||
|
shaixuan_bool, dabiaoti_res_list = yanzhengyijibiaoti("\n".join(mulu_list), res.replace("\n", "\\n"))
|
||
|
if shaixuan_bool == True:
|
||
|
break
|
||
|
|
||
|
content_1 = []
|
||
|
for yijibiaoti in dabiaoti_res_list:
|
||
|
content_2 = []
|
||
|
for erjibiaoti in paper_content[yijibiaoti]:
|
||
|
num = random.randint(2, 6)
|
||
|
content = paper_content[yijibiaoti][erjibiaoti]
|
||
|
res = request_selfmodel_api(f'任务:生成段落主要内容\n请对以下内容进行提取信息,只需要提取{str(num)}条主要内容,使用条数罗列下面这段话的主要信息,例如1. xxx\n2.xxx \n' + content)['choices'][0]['message']['content']
|
||
|
tiaoshu_list = str(res).split("\n")
|
||
|
|
||
|
tiaoshu_list_new = []
|
||
|
for dantiao in tiaoshu_list:
|
||
|
tiaoshu_list_new.append(re.findall(pantten_content_tiaoshu, dantiao)[0].strip())
|
||
|
content_2.append({
|
||
|
"title_small": erjibiaoti,
|
||
|
"content_3": tiaoshu_list_new
|
||
|
})
|
||
|
content_1.append({
|
||
|
"title_big": yijibiaoti,
|
||
|
"content_2": content_2
|
||
|
})
|
||
|
|
||
|
data_new = {
|
||
|
"title": fileName,
|
||
|
"catalogue": dabiaoti_res_list,
|
||
|
"content_1": content_1
|
||
|
}
|
||
|
|
||
|
with open("data/ceshi.json", "w", encoding="utf-8") as f:
|
||
|
f.write(json.dumps(data_new, ensure_ascii=False, indent=2))
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# res = request_chatgpt_api(f'针对下面这篇文章,请回答,我为什么选择这个题目,做这个研究有什么意义?\n' + data)['choices'][0]['message']['content']
|
||
|
|
||
|
|
||
|
|
||
|
|