import os import numpy as np from numpy.linalg import norm import pandas as pd # from rouge import Rouge from rouge_chinese import Rouge from Rouge_w import Rouge_w,Rouge_l import json import pymysql import re import requests from flask import Flask, jsonify from flask import request import uuid import time import redis from threading import Thread from multiprocessing import Pool app = Flask(__name__) app.config["JSON_AS_ASCII"] = False pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=7, password="zhicheng123*") redis_ = redis.Redis(connection_pool=pool, decode_responses=True) db_key_query = 'query' db_key_querying = 'querying' db_key_queryset = 'queryset' nums_cpus = 24 rouge = Rouge() rouge_model = Rouge_w() rouge_l_model = Rouge_l() def bert_check(text, recall_data_list): ''' bert 查重 :return: ''' sen_0 = [text] * len(recall_data_list) sen_1 = [i[0] for i in recall_data_list] return_list = [] request_json = { "texts": [sen_0, sen_1], } paper_dict = dialog_line_parse("http://192.168.31.74:16002/", request_json) score_list = paper_dict["res"] # 后期要改 # return_list.append(re1[0][1]) # return_list.append(re1[0][0]) if 1 in score_list: index_score = score_list.index(1) else: index_score = "NaN" if index_score == "NaN": return_list.append(0) return_list.append("") else: return_list.append(1) return_list.append(index_score) return return_list def rouge_value_self(data_1, data_2): data_1 = [' '.join(i) for i in data_1] data_2 = [' '.join(i) for i in data_2] rouge_l_list = [] for sen_1, sen_2 in zip(data_1, data_2): sen_1 = sen_1.split(" ") sen_2 = sen_2.split(" ") rouge_l_score = rouge_l_model.score(sen_1, sen_2) rouge_l_list.append(rouge_l_score) return "", "", rouge_l_list def rouge_pre(text, df_train_nuoche): return_list = [] index_rouge_list = [] text_list = [text] * len(df_train_nuoche) data_list = [] for data_dan in df_train_nuoche: data_list.append(data_dan[0]) rouge_1, rouge_2, rouge_l = rouge_value_self(text_list, data_list) index_rouge_list.extend(rouge_l) re1 = [(i[0], i[1]) for i in sorted(list(enumerate(index_rouge_list)), key=lambda x: x[1], reverse=True)] return_list.append(re1[0][1]) return_list.append(re1[0][0]) return return_list def rouge_pre_m(text, df_train_nuoche): return_list = [] index_rouge_list = [] text_list = [text] * len(df_train_nuoche) data_list = [] for data_dan in df_train_nuoche: data_list.append(data_dan[0]) rouge_1, rouge_2, rouge_l = rouge_value_self(text_list, data_list) index_rouge_list.extend(rouge_l) re1 = [(i[0], i[1]) for i in sorted(list(enumerate(index_rouge_list)), key=lambda x: x[1], reverse=True)] return_list.append(re1[0][1]) return_list.append(re1[0][0]) return return_list def accurate_check_rouge( title, author, text_paper, recall_data_list ): ''' 精确查重出相似句子 :param text: :param recall_data_list: list [[sentence, filename],[sentence, filename],[sentence, filename]] :return: ''' # 文本处理 centent_list = [] text_paper = str(text_paper).replace("。\n", "。") centent_list.extend(text_paper.split("。")) data_zong = [] sentence_word_nums = 0 # rouge算法查重 rst = [] p = Pool(nums_cpus) # 进程池中含有n个子进程 print("centent_list", centent_list) for i in range(len(centent_list)): text = centent_list[i] a = p.apply_async(rouge_pre_m, args=(text, recall_data_list,)) rst.append(a) p.close() p.join() # 等待所有子进程执行完毕。调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。 rst = [i.get() for i in rst] for i in range(len(rst)): print(rst[i]) data_zong.append(rst[i]) t0 = time.time() # bert算法查重 # for text in centent_list: # bert_pre_list = bert_check(text, recall_data_list) # data_zong.append(bert_pre_list) t1 = time.time() original_dict = [] # 找出相似的句子序号 bool_check_sentense = [] # bert算法 # for i in range(len(data_zong)): # if data_zong[i][0] == 1: # bool_check_sentense.append([i,data_zong[i][1]]) # rouge算法 for i in range(len(data_zong)): if data_zong[i][0] > 0.47: bool_check_sentense.append([i,data_zong[i][1]]) biao_red = biaohong(bool_check_sentense, data_zong, recall_data_list) # [[[0, 1, 2], [479, 480, 481]], [[3, 4, 5], [481, 482, 483]], [[6, 7, 8], [484, 485, 486]]] print("bert精确查重时间", t1-t0) sentence_0_list = [] sentence_1_list = [] sim_paper_name = [] for i in biao_red: if recall_data_list[i[1][0]][1] == recall_data_list[i[1][1]][1] == recall_data_list[i[1][2]][1]: sentence_0_list.append("。".join([centent_list[i[0][0]], centent_list[i[0][1]], centent_list[i[0][2]]])) sentence_1_list.append("".join([recall_data_list[i[1][0]][0], recall_data_list[i[1][1]][0], recall_data_list[i[1][2]][0]])) sim_paper_name.append(recall_data_list[i[1][0]][1]) else: continue sentence_0_list_new = [] sentence_1_list_new = [] for i in zip(sentence_0_list, sentence_1_list): if len(i[0]) + len(i[1]) < 1200: sentence_0_list_new.append(i[0]) sentence_1_list_new.append(i[1]) else: print(len(i[0]) + len(i[1])) continue t2 = time.time() paper_dict = biaohong_bert_predict(sentence_0_list_new, sentence_1_list_new) t3 = time.time() print("标红时间", t3 - t2) original_text = [] original_text_contrast = [] repeat_quote_info = [] chongfuwendang = {} for paper_dict_dan_id, sentence_0_dan, sentence_1_dan, sim_paper_name_dan in zip(range(len(paper_dict)), sentence_0_list_new, sentence_1_list_new, sim_paper_name): print([sentence_0_dan, sentence_1_dan]) original_text_contrast_dict = { "original_text": "", "similar_content": [ { "content": "", "thesis_info": "", "title": "", "year": "", "degree": "", "author": "", } ] } try: sentence_0_bool, sentence_0_dan_red = original_text_marked_red(sentence_0_dan, paper_dict[paper_dict_dan_id][0], paper_dict[paper_dict_dan_id][1]) # text_original, bert_text, bert_text_pre except: print("报错", [sentence_0_dan, paper_dict[paper_dict_dan_id][0], paper_dict[paper_dict_dan_id][1]]) continue # 9/0 sentence_1_bool, sentence_1_dan_red = original_text_marked_red(sentence_1_dan, paper_dict[paper_dict_dan_id][2], paper_dict[paper_dict_dan_id][3]) # text_original, bert_text, bert_text_pre if sentence_0_bool == False or sentence_1_bool == False: continue dan_sentence_word_nums = len(paper_dict[paper_dict_dan_id][1]) sentence_word_nums += dan_sentence_word_nums original_text.append(sentence_0_dan_red) original_text_contrast_dict["original_text"] = "此处有 {} 字相似\n".format( dan_sentence_word_nums) + sentence_0_dan_red thesis_info = " ".join([sim_paper_name_dan["title"], sim_paper_name_dan["author"], sim_paper_name_dan["degree"], sim_paper_name_dan["year"]]) original_text_contrast_dict["similar_content"][0]["content"] = sentence_1_dan_red original_text_contrast_dict["similar_content"][0]["title"] = sim_paper_name_dan["title"] original_text_contrast_dict["similar_content"][0]["author"] = sim_paper_name_dan["author"] original_text_contrast_dict["similar_content"][0]["degree"] = sim_paper_name_dan["degree"] original_text_contrast_dict["similar_content"][0]["year"] = sim_paper_name_dan["year"] original_text_contrast_dict["similar_content"][0]["thesis_info"] = thesis_info original_text_contrast.append(original_text_contrast_dict) # for i in repeat_quote_info: # if if thesis_info not in chongfuwendang: chongfuwendang[thesis_info] = { "quote": False, "thesis_author": sim_paper_name_dan["author"], "thesis_date" : sim_paper_name_dan["year"], "thesis_info" : thesis_info, "thesis_repeat_rate": (dan_sentence_word_nums/sim_paper_name_dan["paper_len_word"]) * 100, #round(repetition_rate, 3) * 100 "thesis_title": sim_paper_name_dan["title"], "thesis_link": "", "thesis_publish": sim_paper_name_dan["degree"], "thesis_repeat_word": dan_sentence_word_nums, "thesis_teacher": "", "paper_len_word": sim_paper_name_dan["paper_len_word"] } else: chongfuwendang[thesis_info]["thesis_repeat_word"] += dan_sentence_word_nums chongfuwendang[thesis_info]["thesis_repeat_rate"] = (chongfuwendang[thesis_info]["thesis_repeat_word"]/chongfuwendang[thesis_info]["paper_len_word"]) * 100 chongfuwendang = sorted(chongfuwendang.items(), key=lambda x: x[1]["thesis_repeat_rate"], reverse=False) for i in range(len(chongfuwendang)): repeat_paper_one_info_dict = chongfuwendang[i][1] repeat_paper_one_info_dict.pop("paper_len_word") repeat_paper_one_info_dict["thesis_repeat_rate"] = str(round(repeat_paper_one_info_dict["thesis_repeat_rate"], 1)) + "%" repeat_quote_info.append(repeat_paper_one_info_dict) original_text = "。".join(original_text) repetition_rate = sentence_word_nums/len(text_paper) repetition_rate = round(repetition_rate, 3) * 100 format = '%Y-%m-%d %H:%M:%S' value = time.localtime(int(time.time())) dt = time.strftime(format, value) return { "author": author, "check_time": dt, "title": title, "time_range": "1900-01-01至2023-08-08", "section_data": [ { "oneself_repeat_words": sentence_word_nums, "reference_repeat_words": sentence_word_nums, "section_name": "第1部分", "section_oneself_rate": "{}%".format(repetition_rate), "section_repeat_rate": "{}%".format(repetition_rate), "section_repeat_words": sentence_word_nums, "section_words": len(text_paper) } ], "section_details": [ { "end_page_index": 0, "name": "", "repeat_rate": "", "repeat_words": "", "words": "", "original_text": original_text, "original_text_oneself": original_text, "original_text_contrast": original_text_contrast, "repeat_quote_info": repeat_quote_info } ], "total_data": { "back_repeat_words": "", "exclude_personal_rate": "{}%".format(repetition_rate), "exclude_quote_rate": "{}%".format(repetition_rate), "foot_end_note": "0", "front_repeat_words": "", "single_max_rate": "", "single_max_repeat_words": "", "suspected_paragraph": "1", "suspected_paragraph_max_repeat_words": "", "suspected_paragraph_min_repeat_words": "", "tables": "0", "total_paragraph": "1", "total_repeat_rate": "{}%".format(repetition_rate), "total_repeat_words": sentence_word_nums, "total_words": len(text_paper) } } def biaohong(bool_check_sentense, data_zong, df_train_nuoche): ''' 标红的序号 [[0,1,2],[3,4,5]] :param bool_check_sentense: :return: list ''' biao_red = [] i = 0 start = -1 end = -1 while True: if i >= len(bool_check_sentense) or bool_check_sentense[i][0] +1 >= len(data_zong) or bool_check_sentense[i][1]+1 >= len(df_train_nuoche): break elif bool_check_sentense[i][0]-1 == start: i += 1 continue elif bool_check_sentense[i][0] == end: i += 1 continue elif bool_check_sentense[i][0]-1 == end: i += 1 continue else: biao_red_dan = [] biao_red_dan.append([bool_check_sentense[i][0] - 1, bool_check_sentense[i][1] - 1]) biao_red_dan.append([bool_check_sentense[i][0], bool_check_sentense[i][1]]) biao_red_dan.append([bool_check_sentense[i][0] + 1, bool_check_sentense[i][1] + 1]) biao_red.append([[bool_check_sentense[i][0]-1, bool_check_sentense[i][0], bool_check_sentense[i][0]+1], [bool_check_sentense[i][1]-1, bool_check_sentense[i][1], bool_check_sentense[i][1]+1]]) start = bool_check_sentense[i][0]-1 end = bool_check_sentense[i][0]+1 i += 1 return biao_red def dialog_line_parse(url, text): """ 将数据输入模型进行分析并输出结果 :param url: 模型url :param text: 进入模型的数据 :return: 模型返回结果 """ response = requests.post( url, json=text, timeout=100000 ) if response.status_code == 200: return response.json() else: # logger.error( # "【{}】 Failed to get a proper response from remote " # "server. Status Code: {}. Response: {}" # "".format(url, response.status_code, response.text) # ) print("【{}】 Failed to get a proper response from remote " "server. Status Code: {}. Response: {}" "".format(url, response.status_code, response.text)) print(text) return {} def is_english_char(char): code = ord(char) return 32 <= code <= 126 def original_text_marked_red(text_original, bert_text, bert_text_pre): ''' 把原文标红字段找到 :param text_original: :param bert_text: :param bert_text_pre: :return: ''' fuhao = ["\n"] up_pointer = 0 down_pointer = 0 pointer_list = [] if len(bert_text_pre) > len(bert_text): return False, "" while True: if down_pointer >= len(bert_text_pre): break elif down_pointer == len(bert_text_pre)-1: if bert_text[up_pointer] == bert_text_pre[down_pointer]: pointer_list.append(up_pointer) break else: up_pointer += 1 down_pointer = 0 pointer_list = [] elif bert_text[up_pointer] in fuhao: up_pointer += 1 else: if bert_text[up_pointer] == bert_text_pre[down_pointer]: pointer_list.append(up_pointer) up_pointer += 1 down_pointer += 1 else: if bert_text_pre[down_pointer:down_pointer+5] == "[UNK]": up_pointer += 1 down_pointer += 5 pointer_list.append(up_pointer) elif is_english_char(bert_text_pre[down_pointer]) == True: up_pointer += 1 down_pointer += 1 pointer_list.append(up_pointer) else: up_pointer += 1 down_pointer = 0 pointer_list = [] start = pointer_list[0] end = pointer_list[-1] bert_text_list = list(bert_text) bert_text_list.insert(start, "") bert_text_list.insert(end + 2 , "") text_original_list = list(text_original) up = 0 down = 0 while True: if up == len(text_original_list): break if text_original_list[up] == bert_text_list[down]: up += 1 down += 1 else: if bert_text_list[down] == "": down += 1 elif bert_text_list[down] == "": down += 1 else: bert_text_list.insert(down, text_original_list[up]) up += 1 down += 1 bert_text = "".join(bert_text_list) return True, bert_text def biaohong_bert_predict(sentence_0_list, sentence_1_list): ''' 找出标红字符 :param bool_check_sentense: :return: ''' # sentence_0_list = [] # sentence_1_list = [] # sim_paper_name = [] # # for i in biaohong_list: # sentence_0_list.append("。".join([paper_list[i[0][0]], paper_list[i[0][1]], paper_list[i[0][2]]])) # sentence_1_list.append("。".join([recall_data_list[i[1][1]], recall_data_list[i[1][1]], recall_data_list[i[1][2]]])) paper_dict = dialog_line_parse("http://192.168.31.74:16003/", {"sentence_0": sentence_0_list, "sentence_1": sentence_1_list})["resilt"] # paper_dict # print("原文:".format(i), paper_dict[i][0]) # print("原文标红:".format(i), paper_dict[i][1]) # print("相似:".format(i), paper_dict[i][2]) # print("相似标红:".format(i), paper_dict[i][3]) # original_text # # # for paper_dict_dan, sentence_0_dan, sentence_1_dan in zip(paper_dict, sentence_0_list, sentence_1_list): # original_text_marked_red return paper_dict def ulit_text(title, text): data = [] try: text = json.loads(text)["content"] except: pass text = text.strip().replace("\n", "").replace(" ", "").replace("。", "。\n") text_list = text.split("\n") for i in text_list: data.append([i, title]) return data def run_query(conn, sql, params): with conn.cursor() as cursor: cursor.execute(sql, params) result = cursor.fetchall() return result def processing_one_text(paper_id): conn = pymysql.connect( host='192.168.31.145', port=3306, user='root', password='123456', db='zhiwang_db', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor ) sql = 'SELECT * FROM main_table_paper_detail_message WHERE doc_id=%s' params = (paper_id,) result = run_query(conn, sql, params) conn.close() print(result[0]['title'], result[0]['author']) title = result[0]['title'] author = result[0]['author'] degree = result[0]['degree'] year = result[0]['content'].split("/")[5] content_path = result[0]['content'] try: with open(content_path, encoding="utf-8") as f: text = f.read() except: with open(content_path, encoding="gbk") as f: text = f.read() paper_info = { "title": title, "author": author, "degree": degree, "year": year, "paper_len_word": len(text) } data = ulit_text(paper_info, text) return data def ulit_recall_paper(recall_data_list_dict): ''' 对返回的十篇文章路径读取并解析 :param recall_data_list_path: :return data: list [[sentence, filename],[sentence, filename],[sentence, filename]] ''' # data = [] # for path in recall_data_list_path: # filename = path.split("/")[-1] # with open(path, encoding="gbk") as f: # text = f.read() # text_list = text.split("\n") # for sentence in text_list: # if sentence != "": # data.append([sentence, filename]) # return data data = [] for i in list(recall_data_list_dict.items())[:5]: data_one = processing_one_text(i[0]) data.extend(data_one) return data def recall_10(title, abst_zh, content) -> dict: ''' 宇鹏召回接口 :param paper_name: :return: ''' request_json = { "title": title, "abst_zh": abst_zh, "content": content } paper_dict = dialog_line_parse("http://192.168.31.145:50004/check", request_json) return paper_dict def uilt_content(content): zhaiyao_list = ["摘要"] zhaiyao_en_list = ["Abstract", "abstract"] mulu_list = ["目录"] key_word_list = ["关键词"] key_word_bool = False key_word_str = "" zhaiyao_bool = False zhaiyao_en_bool = False zhaiyao_str = "" zhaiyao_en_str = "" mulu_str = "" zhaiyao_text = "" mulu_bool = False for i in zhaiyao_list: if i in content: zhaiyao_bool = True zhaiyao_str = i break for i in zhaiyao_en_list: if i in content: zhaiyao_en_bool = True zhaiyao_en_str = i break for i in mulu_list: if i in content: mulu_str = i mulu_bool = True break for i in key_word_list: if i in content: key_word_str = i key_word_bool = True break if zhaiyao_bool== True and zhaiyao_en_bool == True: pantten_zhaiyao = "{}(.*?){}".format(zhaiyao_str,zhaiyao_en_str) result_biaoti_list = re.findall(pantten_zhaiyao, content) zhaiyao_text = result_biaoti_list[0] elif zhaiyao_bool == True and key_word_bool == True: pantten_zhaiyao = "{}(.*?){}".format(zhaiyao_str,key_word_str ) result_biaoti_list = re.findall(pantten_zhaiyao, content) zhaiyao_text = result_biaoti_list[0] elif zhaiyao_bool == True and mulu_bool == True: pantten_zhaiyao = "{}(.*?){}".format(zhaiyao_str,mulu_str) result_biaoti_list = re.findall(pantten_zhaiyao, content) zhaiyao_text = result_biaoti_list[0] return zhaiyao_text def ulit_request_file(file): file_name = file.filename if file_name.split(".")[-1] == "txt": file_name_save = "data/request/{}".format(file_name) file.save(file_name_save) try: with open(file_name_save, encoding="gbk") as f: content = f.read() except: with open(file_name_save, encoding="utf-8") as f: content = f.read() content = content.strip().replace("\n", "").replace(" ", "") abst_zh = uilt_content(content) return abst_zh, content # @app.route("/", methods=["POST"]) # def handle_query(): # print(request.remote_addr) # # # request.form.get('prompt') # dataBases = request.form.get("dataBases") # minSimilarity = request.form.get("minSimilarity") # txt # minWords = request.form.get("minWords") # title = request.form.get("title") # author = request.form.get("author") # txt # file = request.files.get('file') # token = request.form.get("token") # account = request.form.get("account") # goodsId = request.form.get("goodsId") # callbackUrl = request.form.get("callbackUrl") # # # t0 = time.time() # abst_zh, content = ulit_request_file(file) # # # 调用宇鹏查询相似十篇 # # recall_data_list_dict = recall_10(title, abst_zh, content) # # t1 = time.time() # print("查找相似的50篇完成") # with open("data/rell_json.txt") as f: # recall_data_list_dict = eval(f.read()) # # # 读取文章转化成格式数据 # recall_data_list = ulit_recall_paper(recall_data_list_dict) # print("文章格式转化完成") # # # recall_data_list = pd.read_csv("data/10235513_大型商业建筑人员疏散设计研究_沈福禹/查重.csv", encoding="utf-8").values.tolist() # # # 进入精确查重系统 # print("进入精确查重系统") # return_list = accurate_check_rouge(title, author, content, recall_data_list) # # print("召回50篇", t1 - t0) # # return_text = {"resilt": return_list, "probabilities": None, "status_code": 200} # return jsonify(return_text) # 返回结果 def classify(): # 调用模型,设置最大batch_size while True: if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 time.sleep(3) continue query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text data_dict_path = json.loads(query) path = data_dict_path['path'] # text_type = data_dict["text_type"] with open(path, encoding='utf8') as f1: # 加载文件的对象 data_dict = json.load(f1) query_id = data_dict['id'] print(query_id) dataBases = data_dict['dataBases'] minSimilarity = data_dict['minSimilarity'] minWords = data_dict['minWords'] title = data_dict['title'] author = data_dict['author'] abst_zh = data_dict['abst_zh'] content = data_dict['content'] token = data_dict['token'] account = data_dict['account'] goodsId = data_dict['goodsId'] callbackUrl = data_dict['callbackUrl'] # 调用宇鹏查询相似十篇 # recall_data_list_dict = recall_10(title, abst_zh, content) t1 = time.time() print("查找相似的50篇完成") with open("data/rell_json.txt") as f: recall_data_list_dict = eval(f.read()) # 读取文章转化成格式数据 recall_data_list = ulit_recall_paper(recall_data_list_dict) print("文章格式转化完成") # recall_data_list = pd.read_csv("data/10235513_大型商业建筑人员疏散设计研究_沈福禹/查重.csv", encoding="utf-8").values.tolist() # 进入精确查重系统 print("进入精确查重系统") return_list = accurate_check_rouge(title, author, content, recall_data_list) return_text = {"resilt": return_list, "probabilities": None, "status_code": 200} load_result_path = "./new_data_logs/{}.json".format(query_id) print("query_id: ", query_id) print("load_result_path: ", load_result_path) with open(load_result_path, 'w', encoding='utf8') as f2: # ensure_ascii=False才能输入中文,否则是Unicode字符 # indent=2 JSON数据的缩进,美观 json.dump(return_text, f2, ensure_ascii=False, indent=4) print(query_id) print(load_result_path) redis_.set(query_id, load_result_path, 86400) redis_.srem(db_key_querying, query_id) @app.route("/", methods=["POST"]) def handle_query(): try: print(request.remote_addr) # request.form.get('prompt') dataBases = request.form.get("dataBases") minSimilarity = request.form.get("minSimilarity") # txt minWords = request.form.get("minWords") title = request.form.get("title") author = request.form.get("author") # txt file = request.files.get('file') token = request.form.get("token") account = request.form.get("account") goodsId = request.form.get("goodsId") callbackUrl = request.form.get("callbackUrl") abst_zh, content = ulit_request_file(file) id_ = str(uuid.uuid1()) # 为query生成唯一标识 print("uuid: ", uuid) print(id_) d = { 'id': id_, 'dataBases': dataBases, 'minSimilarity': minSimilarity, 'minWords': minWords, 'title': title, 'author': author, 'abst_zh': abst_zh, 'content': content, 'token': token, 'account': account, 'goodsId': goodsId, 'callbackUrl': callbackUrl } # 绑定文本和query id print(d) load_request_path = './request_data_logs/{}.json'.format(id_) with open(load_request_path, 'w', encoding='utf8') as f2: # ensure_ascii=False才能输入中文,否则是Unicode字符 # indent=2 JSON数据的缩进,美观 json.dump(d, f2, ensure_ascii=False, indent=4) redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis redis_.sadd(db_key_querying, id_) redis_.sadd(db_key_queryset, id_) return_text = { 'code': 0, 'msg': "请求成功", 'data': { 'balances': "", 'orderId': id_, 'consumeNum': "" } } print("ok") except: return_text = {'code': 1} return jsonify(return_text) # 返回结果 t = Thread(target=classify) t.start() if __name__ == "__main__": app.run(host="0.0.0.0", port=16001, threaded=True, debug=True)