# -*- coding: utf-8 -*- """ @Time : 2023/3/10 18:53 @Author : @FileName: @Software: @Describe: """ import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0" # import pickle # import redis # from redis import ConnectionPool # app = Flask(__name__) import numpy as np import pandas as pd import json from keras.layers import * from tqdm import tqdm import time from src.basemodel import ClassifyModel if __name__ == '__main__': maxlen = 256 batch_size = 32 # bert配置 config_path = 'chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_config.json' checkpoint_path = 'chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_model.ckpt' dict_path = 'chinese_roberta_wwm_ext_L-12_H-768_A-12/vocab.txt' texts = ["我们有个好朋友"] * 34 print(texts) classifymodel = ClassifyModel(config_path, checkpoint_path, dict_path, is_train=False, load_weights_path=None) # data = classifymodel.data_generator(texts, batch_size) # for token, segment in zip(data[0],data[1]): # print(classifymodel.predict(token, segment).shape) df_train_nuoche = pd.read_csv("data/10235513_大型商业建筑人员疏散设计研究_沈福禹/查重.csv",encoding="utf-8") Data = [] for data_dan in df_train_nuoche.values.tolist(): Data.append(data_dan[0]) print(Data[0]) print(len(Data)) data = classifymodel.data_generator(Data, batch_size) print(len(data[0][-1])) # print(type(train_generator)) # d = next(train_generator) # print(d) a1 = np.empty((0, 768), dtype=int) for token, segment in zip(data[0],data[1]): a2 = classifymodel.predict(token, segment) a1 = np.concatenate([a1, a2]) print(a1.shape) np.save('data/10235513_大型商业建筑人员疏散设计研究_沈福禹/save_x', a1)