Browse Source

增加单句多篇幅检测

master
majiahui@haimaqingfan.com 2 years ago
parent
commit
c4deec0d3f
  1. 16
      flask_check_bert_test.py

16
flask_check_bert_test.py

@ -808,7 +808,7 @@ def ulit_recall_paper(recall_data_list_dict):
return data
def recall_10(title, abst_zh, content) -> dict:
def recall_10(queue_uuid, title, abst_zh, content) -> dict:
'''
宇鹏召回接口
:param paper_name:
@ -816,6 +816,7 @@ def recall_10(title, abst_zh, content) -> dict:
'''
request_json = {
"uuid": queue_uuid,
"title": title,
"abst_zh": abst_zh,
"content": content
@ -958,8 +959,8 @@ def classify(): # 调用模型,设置最大batch_size
# 加载文件的对象
data_dict = json.load(f1)
query_id = data_dict['id']
print(query_id)
queue_uuid = data_dict['id']
print(queue_uuid)
dataBases = data_dict['dataBases']
minSimilarity = data_dict['minSimilarity']
minWords = data_dict['minWords']
@ -973,12 +974,11 @@ def classify(): # 调用模型,设置最大batch_size
callbackUrl = data_dict['callbackUrl']
# 调用宇鹏查询相似十篇
# recall_data_list_dict = recall_10(title, abst_zh, content)
recall_data_list_dict = recall_10(queue_uuid, title, abst_zh, content)
t1 = time.time()
print("查找相似的50篇完成")
with open("data/rell_json.txt") as f:
recall_data_list_dict = eval(f.read())
# print("查找相似的50篇完成")
# with open("data/rell_json.txt") as f:
# recall_data_list_dict = eval(f.read())
# 读取文章转化成格式数据
recall_data_list = ulit_recall_paper(recall_data_list_dict)

Loading…
Cancel
Save