|
@ -808,7 +808,7 @@ def ulit_recall_paper(recall_data_list_dict): |
|
|
return data |
|
|
return data |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def recall_10(title, abst_zh, content) -> dict: |
|
|
def recall_10(queue_uuid, title, abst_zh, content) -> dict: |
|
|
''' |
|
|
''' |
|
|
宇鹏召回接口 |
|
|
宇鹏召回接口 |
|
|
:param paper_name: |
|
|
:param paper_name: |
|
@ -816,6 +816,7 @@ def recall_10(title, abst_zh, content) -> dict: |
|
|
''' |
|
|
''' |
|
|
|
|
|
|
|
|
request_json = { |
|
|
request_json = { |
|
|
|
|
|
"uuid": queue_uuid, |
|
|
"title": title, |
|
|
"title": title, |
|
|
"abst_zh": abst_zh, |
|
|
"abst_zh": abst_zh, |
|
|
"content": content |
|
|
"content": content |
|
@ -958,8 +959,8 @@ def classify(): # 调用模型,设置最大batch_size |
|
|
# 加载文件的对象 |
|
|
# 加载文件的对象 |
|
|
data_dict = json.load(f1) |
|
|
data_dict = json.load(f1) |
|
|
|
|
|
|
|
|
query_id = data_dict['id'] |
|
|
queue_uuid = data_dict['id'] |
|
|
print(query_id) |
|
|
print(queue_uuid) |
|
|
dataBases = data_dict['dataBases'] |
|
|
dataBases = data_dict['dataBases'] |
|
|
minSimilarity = data_dict['minSimilarity'] |
|
|
minSimilarity = data_dict['minSimilarity'] |
|
|
minWords = data_dict['minWords'] |
|
|
minWords = data_dict['minWords'] |
|
@ -973,12 +974,11 @@ def classify(): # 调用模型,设置最大batch_size |
|
|
callbackUrl = data_dict['callbackUrl'] |
|
|
callbackUrl = data_dict['callbackUrl'] |
|
|
|
|
|
|
|
|
# 调用宇鹏查询相似十篇 |
|
|
# 调用宇鹏查询相似十篇 |
|
|
# recall_data_list_dict = recall_10(title, abst_zh, content) |
|
|
recall_data_list_dict = recall_10(queue_uuid, title, abst_zh, content) |
|
|
|
|
|
|
|
|
t1 = time.time() |
|
|
# print("查找相似的50篇完成") |
|
|
print("查找相似的50篇完成") |
|
|
# with open("data/rell_json.txt") as f: |
|
|
with open("data/rell_json.txt") as f: |
|
|
# recall_data_list_dict = eval(f.read()) |
|
|
recall_data_list_dict = eval(f.read()) |
|
|
|
|
|
|
|
|
|
|
|
# 读取文章转化成格式数据 |
|
|
# 读取文章转化成格式数据 |
|
|
recall_data_list = ulit_recall_paper(recall_data_list_dict) |
|
|
recall_data_list = ulit_recall_paper(recall_data_list_dict) |
|
|