diff --git a/flask_check_bert_test.py b/flask_check_bert_test.py index 30b398a..a132420 100644 --- a/flask_check_bert_test.py +++ b/flask_check_bert_test.py @@ -808,7 +808,7 @@ def ulit_recall_paper(recall_data_list_dict): return data -def recall_10(title, abst_zh, content) -> dict: +def recall_10(queue_uuid, title, abst_zh, content) -> dict: ''' 宇鹏召回接口 :param paper_name: @@ -816,6 +816,7 @@ def recall_10(title, abst_zh, content) -> dict: ''' request_json = { + "uuid": queue_uuid, "title": title, "abst_zh": abst_zh, "content": content @@ -958,8 +959,8 @@ def classify(): # 调用模型,设置最大batch_size # 加载文件的对象 data_dict = json.load(f1) - query_id = data_dict['id'] - print(query_id) + queue_uuid = data_dict['id'] + print(queue_uuid) dataBases = data_dict['dataBases'] minSimilarity = data_dict['minSimilarity'] minWords = data_dict['minWords'] @@ -973,12 +974,11 @@ def classify(): # 调用模型,设置最大batch_size callbackUrl = data_dict['callbackUrl'] # 调用宇鹏查询相似十篇 - # recall_data_list_dict = recall_10(title, abst_zh, content) + recall_data_list_dict = recall_10(queue_uuid, title, abst_zh, content) - t1 = time.time() - print("查找相似的50篇完成") - with open("data/rell_json.txt") as f: - recall_data_list_dict = eval(f.read()) + # print("查找相似的50篇完成") + # with open("data/rell_json.txt") as f: + # recall_data_list_dict = eval(f.read()) # 读取文章转化成格式数据 recall_data_list = ulit_recall_paper(recall_data_list_dict)