diff --git a/flask_check_bert_test.py b/flask_check_bert_test.py
new file mode 100644
index 0000000..c40ff48
--- /dev/null
+++ b/flask_check_bert_test.py
@@ -0,0 +1,903 @@
+import os
+import numpy as np
+from numpy.linalg import norm
+import pandas as pd
+# from rouge import Rouge
+from rouge_chinese import Rouge
+from Rouge_w import Rouge_w,Rouge_l
+import json
+import pymysql
+import re
+import requests
+from flask import Flask, jsonify
+from flask import request
+import uuid
+import time
+import redis
+from threading import Thread
+from multiprocessing import Pool
+app = Flask(__name__)
+app.config["JSON_AS_ASCII"] = False
+
+pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=7, password="zhicheng123*")
+redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
+
+db_key_query = 'query'
+db_key_querying = 'querying'
+db_key_queryset = 'queryset'
+
+nums_cpus = 24
+rouge = Rouge()
+rouge_model = Rouge_w()
+rouge_l_model = Rouge_l()
+
+
+def bert_check(text, recall_data_list):
+ '''
+ bert 查重
+ :return:
+ '''
+
+ sen_0 = [text] * len(recall_data_list)
+ sen_1 = [i[0] for i in recall_data_list]
+
+ return_list = []
+ request_json = {
+ "texts": [sen_0, sen_1],
+ }
+ paper_dict = dialog_line_parse("http://192.168.31.74:16002/", request_json)
+ score_list = paper_dict["res"]
+
+ # 后期要改
+ # return_list.append(re1[0][1])
+ # return_list.append(re1[0][0])
+ if 1 in score_list:
+ index_score = score_list.index(1)
+ else:
+ index_score = "NaN"
+
+ if index_score == "NaN":
+ return_list.append(0)
+ return_list.append("")
+ else:
+ return_list.append(1)
+ return_list.append(index_score)
+
+ return return_list
+
+
+
+def rouge_value_self(data_1, data_2):
+ data_1 = [' '.join(i) for i in data_1]
+ data_2 = [' '.join(i) for i in data_2]
+ rouge_l_list = []
+
+ for sen_1, sen_2 in zip(data_1, data_2):
+ sen_1 = sen_1.split(" ")
+ sen_2 = sen_2.split(" ")
+ rouge_l_score = rouge_l_model.score(sen_1, sen_2)
+ rouge_l_list.append(rouge_l_score)
+
+ return "", "", rouge_l_list
+
+
+def rouge_pre(text, df_train_nuoche):
+
+ return_list = []
+ index_rouge_list = []
+ text_list = [text] * len(df_train_nuoche)
+
+ data_list = []
+ for data_dan in df_train_nuoche:
+ data_list.append(data_dan[0])
+ rouge_1, rouge_2, rouge_l = rouge_value_self(text_list, data_list)
+ index_rouge_list.extend(rouge_l)
+
+ re1 = [(i[0], i[1]) for i in sorted(list(enumerate(index_rouge_list)), key=lambda x: x[1], reverse=True)]
+
+ return_list.append(re1[0][1])
+ return_list.append(re1[0][0])
+
+ return return_list
+
+
+def rouge_pre_m(text, df_train_nuoche):
+
+ return_list = []
+ index_rouge_list = []
+
+ text_list = [text] * len(df_train_nuoche)
+
+ data_list = []
+ for data_dan in df_train_nuoche:
+ data_list.append(data_dan[0])
+ rouge_1, rouge_2, rouge_l = rouge_value_self(text_list, data_list)
+ index_rouge_list.extend(rouge_l)
+
+ re1 = [(i[0], i[1]) for i in sorted(list(enumerate(index_rouge_list)), key=lambda x: x[1], reverse=True)]
+
+ return_list.append(re1[0][1])
+ return_list.append(re1[0][0])
+
+ return return_list
+
+
+def accurate_check_rouge(
+ title,
+ author,
+ text_paper,
+ recall_data_list
+ ):
+ '''
+ 精确查重出相似句子
+ :param text:
+ :param recall_data_list: list [[sentence, filename],[sentence, filename],[sentence, filename]]
+ :return:
+ '''
+ # 文本处理
+ centent_list = []
+ text_paper = str(text_paper).replace("。\n", "。")
+ centent_list.extend(text_paper.split("。"))
+ data_zong = []
+ sentence_word_nums = 0
+
+ # rouge算法查重
+ rst = []
+ p = Pool(nums_cpus) # 进程池中含有n个子进程
+
+ print("centent_list", centent_list)
+
+ for i in range(len(centent_list)):
+ text = centent_list[i]
+ a = p.apply_async(rouge_pre_m, args=(text, recall_data_list,))
+ rst.append(a)
+ p.close()
+ p.join() # 等待所有子进程执行完毕。调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。
+
+ rst = [i.get() for i in rst]
+
+ for i in range(len(rst)):
+ print(rst[i])
+ data_zong.append(rst[i])
+
+ t0 = time.time()
+ # bert算法查重
+ # for text in centent_list:
+ # bert_pre_list = bert_check(text, recall_data_list)
+ # data_zong.append(bert_pre_list)
+ t1 = time.time()
+ original_dict = []
+
+
+ # 找出相似的句子序号
+ bool_check_sentense = []
+ # bert算法
+ # for i in range(len(data_zong)):
+ # if data_zong[i][0] == 1:
+ # bool_check_sentense.append([i,data_zong[i][1]])
+
+ # rouge算法
+ for i in range(len(data_zong)):
+ if data_zong[i][0] > 0.47:
+ bool_check_sentense.append([i,data_zong[i][1]])
+ biao_red = biaohong(bool_check_sentense, data_zong, recall_data_list) # [[[0, 1, 2], [479, 480, 481]], [[3, 4, 5], [481, 482, 483]], [[6, 7, 8], [484, 485, 486]]]
+
+ print("bert精确查重时间", t1-t0)
+
+
+ sentence_0_list = []
+ sentence_1_list = []
+ sim_paper_name = []
+
+ for i in biao_red:
+ if recall_data_list[i[1][0]][1] == recall_data_list[i[1][1]][1] == recall_data_list[i[1][2]][1]:
+ sentence_0_list.append("。".join([centent_list[i[0][0]], centent_list[i[0][1]], centent_list[i[0][2]]]))
+ sentence_1_list.append("".join([recall_data_list[i[1][0]][0], recall_data_list[i[1][1]][0], recall_data_list[i[1][2]][0]]))
+ sim_paper_name.append(recall_data_list[i[1][0]][1])
+ else:
+ continue
+
+ sentence_0_list_new = []
+ sentence_1_list_new = []
+
+
+ for i in zip(sentence_0_list, sentence_1_list):
+ if len(i[0]) + len(i[1]) < 1200:
+ sentence_0_list_new.append(i[0])
+ sentence_1_list_new.append(i[1])
+ else:
+ print(len(i[0]) + len(i[1]))
+ continue
+ t2 = time.time()
+ paper_dict = biaohong_bert_predict(sentence_0_list_new, sentence_1_list_new)
+
+ t3 = time.time()
+ print("标红时间", t3 - t2)
+ original_text = []
+ original_text_contrast = []
+ repeat_quote_info = []
+
+ chongfuwendang = {}
+
+ for paper_dict_dan_id, sentence_0_dan, sentence_1_dan, sim_paper_name_dan in zip(range(len(paper_dict)), sentence_0_list_new, sentence_1_list_new, sim_paper_name):
+
+ print([sentence_0_dan, sentence_1_dan])
+ original_text_contrast_dict = {
+ "original_text": "",
+ "similar_content": [
+ {
+ "content": "",
+ "thesis_info": "",
+ "title": "",
+ "year": "",
+ "degree": "",
+ "author": "",
+ }
+ ]
+ }
+ try:
+ sentence_0_bool, sentence_0_dan_red = original_text_marked_red(sentence_0_dan, paper_dict[paper_dict_dan_id][0], paper_dict[paper_dict_dan_id][1]) # text_original, bert_text, bert_text_pre
+ except:
+ print("报错", [sentence_0_dan, paper_dict[paper_dict_dan_id][0], paper_dict[paper_dict_dan_id][1]])
+ continue
+ # 9/0
+ sentence_1_bool, sentence_1_dan_red = original_text_marked_red(sentence_1_dan, paper_dict[paper_dict_dan_id][2], paper_dict[paper_dict_dan_id][3]) # text_original, bert_text, bert_text_pre
+
+ if sentence_0_bool == False or sentence_1_bool == False:
+ continue
+
+ dan_sentence_word_nums = len(paper_dict[paper_dict_dan_id][1])
+ sentence_word_nums += dan_sentence_word_nums
+
+ original_text.append(sentence_0_dan_red)
+ original_text_contrast_dict["original_text"] = "此处有 {} 字相似\n".format(
+ dan_sentence_word_nums) + sentence_0_dan_red
+
+ thesis_info = " ".join([sim_paper_name_dan["title"], sim_paper_name_dan["author"], sim_paper_name_dan["degree"], sim_paper_name_dan["year"]])
+ original_text_contrast_dict["similar_content"][0]["content"] = sentence_1_dan_red
+ original_text_contrast_dict["similar_content"][0]["title"] = sim_paper_name_dan["title"]
+ original_text_contrast_dict["similar_content"][0]["author"] = sim_paper_name_dan["author"]
+ original_text_contrast_dict["similar_content"][0]["degree"] = sim_paper_name_dan["degree"]
+ original_text_contrast_dict["similar_content"][0]["year"] = sim_paper_name_dan["year"]
+ original_text_contrast_dict["similar_content"][0]["thesis_info"] = thesis_info
+
+ original_text_contrast.append(original_text_contrast_dict)
+
+ # for i in repeat_quote_info:
+ # if
+
+ if thesis_info not in chongfuwendang:
+ chongfuwendang[thesis_info] = {
+ "quote": False,
+ "thesis_author": sim_paper_name_dan["author"],
+ "thesis_date" : sim_paper_name_dan["year"],
+ "thesis_info" : thesis_info,
+ "thesis_repeat_rate": (dan_sentence_word_nums/sim_paper_name_dan["paper_len_word"]) * 100, #round(repetition_rate, 3) * 100
+ "thesis_title": sim_paper_name_dan["title"],
+ "thesis_link": "",
+ "thesis_publish": sim_paper_name_dan["degree"],
+ "thesis_repeat_word": dan_sentence_word_nums,
+ "thesis_teacher": "",
+ "paper_len_word": sim_paper_name_dan["paper_len_word"]
+ }
+ else:
+ chongfuwendang[thesis_info]["thesis_repeat_word"] += dan_sentence_word_nums
+ chongfuwendang[thesis_info]["thesis_repeat_rate"] = (chongfuwendang[thesis_info]["thesis_repeat_word"]/chongfuwendang[thesis_info]["paper_len_word"]) * 100
+
+
+ chongfuwendang = sorted(chongfuwendang.items(),
+ key=lambda x: x[1]["thesis_repeat_rate"], reverse=False)
+
+
+ for i in range(len(chongfuwendang)):
+ repeat_paper_one_info_dict = chongfuwendang[i][1]
+ repeat_paper_one_info_dict.pop("paper_len_word")
+ repeat_paper_one_info_dict["thesis_repeat_rate"] = str(round(repeat_paper_one_info_dict["thesis_repeat_rate"], 1)) + "%"
+ repeat_quote_info.append(repeat_paper_one_info_dict)
+
+ original_text = "。".join(original_text)
+
+ repetition_rate = sentence_word_nums/len(text_paper)
+ repetition_rate = round(repetition_rate, 3) * 100
+
+ format = '%Y-%m-%d %H:%M:%S'
+ value = time.localtime(int(time.time()))
+ dt = time.strftime(format, value)
+
+ return {
+ "author": author,
+ "check_time": dt,
+ "title": title,
+ "time_range": "1900-01-01至2023-08-08",
+ "section_data": [
+ {
+ "oneself_repeat_words": sentence_word_nums,
+ "reference_repeat_words": sentence_word_nums,
+ "section_name": "第1部分",
+ "section_oneself_rate": "{}%".format(repetition_rate),
+ "section_repeat_rate": "{}%".format(repetition_rate),
+ "section_repeat_words": sentence_word_nums,
+ "section_words": len(text_paper)
+ }
+ ],
+ "section_details": [
+ {
+ "end_page_index": 0,
+ "name": "",
+ "repeat_rate": "",
+ "repeat_words": "",
+ "words": "",
+ "original_text": original_text,
+ "original_text_oneself": original_text,
+ "original_text_contrast": original_text_contrast,
+ "repeat_quote_info": repeat_quote_info
+ }
+ ],
+ "total_data": {
+ "back_repeat_words": "",
+ "exclude_personal_rate": "{}%".format(repetition_rate),
+ "exclude_quote_rate": "{}%".format(repetition_rate),
+ "foot_end_note": "0",
+ "front_repeat_words": "",
+ "single_max_rate": "",
+ "single_max_repeat_words": "",
+ "suspected_paragraph": "1",
+ "suspected_paragraph_max_repeat_words": "",
+ "suspected_paragraph_min_repeat_words": "",
+ "tables": "0",
+ "total_paragraph": "1",
+ "total_repeat_rate": "{}%".format(repetition_rate),
+ "total_repeat_words": sentence_word_nums,
+ "total_words": len(text_paper)
+ }
+ }
+
+
+
+
+
+def biaohong(bool_check_sentense, data_zong, df_train_nuoche):
+ '''
+ 标红的序号 [[0,1,2],[3,4,5]]
+ :param bool_check_sentense:
+ :return: list
+ '''
+ biao_red = []
+ i = 0
+ start = -1
+ end = -1
+ while True:
+ if i >= len(bool_check_sentense) or bool_check_sentense[i][0] +1 >= len(data_zong) or bool_check_sentense[i][1]+1 >= len(df_train_nuoche):
+ break
+ elif bool_check_sentense[i][0]-1 == start:
+ i += 1
+ continue
+ elif bool_check_sentense[i][0] == end:
+ i += 1
+ continue
+ elif bool_check_sentense[i][0]-1 == end:
+ i += 1
+ continue
+ else:
+ biao_red_dan = []
+ biao_red_dan.append([bool_check_sentense[i][0] - 1, bool_check_sentense[i][1] - 1])
+ biao_red_dan.append([bool_check_sentense[i][0], bool_check_sentense[i][1]])
+ biao_red_dan.append([bool_check_sentense[i][0] + 1, bool_check_sentense[i][1] + 1])
+ biao_red.append([[bool_check_sentense[i][0]-1, bool_check_sentense[i][0], bool_check_sentense[i][0]+1],
+ [bool_check_sentense[i][1]-1, bool_check_sentense[i][1], bool_check_sentense[i][1]+1]])
+ start = bool_check_sentense[i][0]-1
+ end = bool_check_sentense[i][0]+1
+ i += 1
+
+ return biao_red
+
+
+def dialog_line_parse(url, text):
+ """
+ 将数据输入模型进行分析并输出结果
+ :param url: 模型url
+ :param text: 进入模型的数据
+ :return: 模型返回结果
+ """
+
+ response = requests.post(
+ url,
+ json=text,
+ timeout=100000
+ )
+ if response.status_code == 200:
+ return response.json()
+ else:
+ # logger.error(
+ # "【{}】 Failed to get a proper response from remote "
+ # "server. Status Code: {}. Response: {}"
+ # "".format(url, response.status_code, response.text)
+ # )
+ print("【{}】 Failed to get a proper response from remote "
+ "server. Status Code: {}. Response: {}"
+ "".format(url, response.status_code, response.text))
+ print(text)
+ return {}
+
+
+def is_english_char(char):
+ code = ord(char)
+ return 32 <= code <= 126
+
+
+def original_text_marked_red(text_original, bert_text, bert_text_pre):
+ '''
+ 把原文标红字段找到
+ :param text_original:
+ :param bert_text:
+ :param bert_text_pre:
+ :return:
+ '''
+
+ fuhao = ["\n"]
+ up_pointer = 0
+ down_pointer = 0
+
+ pointer_list = []
+
+ if len(bert_text_pre) > len(bert_text):
+ return False, ""
+
+ while True:
+ if down_pointer >= len(bert_text_pre):
+ break
+ elif down_pointer == len(bert_text_pre)-1:
+ if bert_text[up_pointer] == bert_text_pre[down_pointer]:
+ pointer_list.append(up_pointer)
+ break
+ else:
+ up_pointer += 1
+ down_pointer = 0
+ pointer_list = []
+
+ elif bert_text[up_pointer] in fuhao:
+ up_pointer += 1
+
+ else:
+ if bert_text[up_pointer] == bert_text_pre[down_pointer]:
+ pointer_list.append(up_pointer)
+ up_pointer += 1
+ down_pointer += 1
+ else:
+ if bert_text_pre[down_pointer:down_pointer+5] == "[UNK]":
+ up_pointer += 1
+ down_pointer += 5
+ pointer_list.append(up_pointer)
+ elif is_english_char(bert_text_pre[down_pointer]) == True:
+ up_pointer += 1
+ down_pointer += 1
+ pointer_list.append(up_pointer)
+ else:
+ up_pointer += 1
+ down_pointer = 0
+ pointer_list = []
+
+
+ start = pointer_list[0]
+ end = pointer_list[-1]
+ bert_text_list = list(bert_text)
+ bert_text_list.insert(start, "")
+ bert_text_list.insert(end + 2 , "")
+
+ text_original_list = list(text_original)
+
+ up = 0
+ down = 0
+
+ while True:
+ if up == len(text_original_list):
+ break
+
+ if text_original_list[up] == bert_text_list[down]:
+ up += 1
+ down += 1
+
+ else:
+ if bert_text_list[down] == "":
+ down += 1
+ elif bert_text_list[down] == "":
+ down += 1
+ else:
+ bert_text_list.insert(down, text_original_list[up])
+ up += 1
+ down += 1
+
+ bert_text = "".join(bert_text_list)
+ return True, bert_text
+
+
+def biaohong_bert_predict(sentence_0_list, sentence_1_list):
+ '''
+ 找出标红字符
+ :param bool_check_sentense:
+ :return:
+ '''
+
+ # sentence_0_list = []
+ # sentence_1_list = []
+ # sim_paper_name = []
+ #
+ # for i in biaohong_list:
+ # sentence_0_list.append("。".join([paper_list[i[0][0]], paper_list[i[0][1]], paper_list[i[0][2]]]))
+ # sentence_1_list.append("。".join([recall_data_list[i[1][1]], recall_data_list[i[1][1]], recall_data_list[i[1][2]]]))
+
+ paper_dict = dialog_line_parse("http://192.168.31.74:16003/", {"sentence_0": sentence_0_list, "sentence_1": sentence_1_list})["resilt"]
+
+ # paper_dict
+ # print("原文:".format(i), paper_dict[i][0])
+ # print("原文标红:".format(i), paper_dict[i][1])
+ # print("相似:".format(i), paper_dict[i][2])
+ # print("相似标红:".format(i), paper_dict[i][3])
+
+ # original_text
+ #
+ #
+ # for paper_dict_dan, sentence_0_dan, sentence_1_dan in zip(paper_dict, sentence_0_list, sentence_1_list):
+ # original_text_marked_red
+
+ return paper_dict
+
+def ulit_text(title, text):
+ data = []
+ try:
+ text = json.loads(text)["content"]
+ except:
+ pass
+
+ text = text.strip().replace("\n", "").replace(" ", "").replace("。", "。\n")
+ text_list = text.split("\n")
+
+ for i in text_list:
+ data.append([i, title])
+ return data
+
+def run_query(conn, sql, params):
+ with conn.cursor() as cursor:
+ cursor.execute(sql, params)
+ result = cursor.fetchall()
+ return result
+
+
+def processing_one_text(paper_id):
+ conn = pymysql.connect(
+ host='192.168.31.145',
+ port=3306,
+ user='root',
+ password='123456',
+ db='zhiwang_db',
+ charset='utf8mb4',
+ cursorclass=pymysql.cursors.DictCursor
+ )
+
+ sql = 'SELECT * FROM main_table_paper_detail_message WHERE doc_id=%s'
+ params = (paper_id,)
+
+ result = run_query(conn, sql, params)
+
+ conn.close()
+ print(result[0]['title'], result[0]['author'])
+ title = result[0]['title']
+ author = result[0]['author']
+ degree = result[0]['degree']
+ year = result[0]['content'].split("/")[5]
+ content_path = result[0]['content']
+
+ try:
+ with open(content_path, encoding="utf-8") as f:
+ text = f.read()
+ except:
+ with open(content_path, encoding="gbk") as f:
+ text = f.read()
+
+ paper_info = {
+ "title": title,
+ "author": author,
+ "degree": degree,
+ "year": year,
+ "paper_len_word": len(text)
+ }
+ data = ulit_text(paper_info, text)
+ return data
+
+
+def ulit_recall_paper(recall_data_list_dict):
+ '''
+ 对返回的十篇文章路径读取并解析
+ :param recall_data_list_path:
+ :return data: list [[sentence, filename],[sentence, filename],[sentence, filename]]
+ '''
+
+ # data = []
+ # for path in recall_data_list_path:
+ # filename = path.split("/")[-1]
+ # with open(path, encoding="gbk") as f:
+ # text = f.read()
+ # text_list = text.split("\n")
+ # for sentence in text_list:
+ # if sentence != "":
+ # data.append([sentence, filename])
+ # return data
+
+
+ data = []
+ for i in list(recall_data_list_dict.items())[:5]:
+ data_one = processing_one_text(i[0])
+ data.extend(data_one)
+
+ return data
+
+
+def recall_10(title, abst_zh, content) -> dict:
+ '''
+ 宇鹏召回接口
+ :param paper_name:
+ :return:
+ '''
+
+ request_json = {
+ "title": title,
+ "abst_zh": abst_zh,
+ "content": content
+ }
+ paper_dict = dialog_line_parse("http://192.168.31.145:50004/check", request_json)
+
+ return paper_dict
+
+
+def uilt_content(content):
+ zhaiyao_list = ["摘要"]
+ zhaiyao_en_list = ["Abstract", "abstract"]
+ mulu_list = ["目录"]
+ key_word_list = ["关键词"]
+ key_word_bool = False
+ key_word_str = ""
+ zhaiyao_bool = False
+ zhaiyao_en_bool = False
+ zhaiyao_str = ""
+ zhaiyao_en_str = ""
+ mulu_str = ""
+ zhaiyao_text = ""
+ mulu_bool = False
+
+ for i in zhaiyao_list:
+ if i in content:
+ zhaiyao_bool = True
+ zhaiyao_str = i
+ break
+
+ for i in zhaiyao_en_list:
+ if i in content:
+ zhaiyao_en_bool = True
+ zhaiyao_en_str = i
+ break
+
+ for i in mulu_list:
+ if i in content:
+ mulu_str = i
+ mulu_bool = True
+ break
+
+ for i in key_word_list:
+ if i in content:
+ key_word_str = i
+ key_word_bool = True
+ break
+
+ if zhaiyao_bool== True and zhaiyao_en_bool == True:
+ pantten_zhaiyao = "{}(.*?){}".format(zhaiyao_str,zhaiyao_en_str)
+ result_biaoti_list = re.findall(pantten_zhaiyao, content)
+ zhaiyao_text = result_biaoti_list[0]
+
+ elif zhaiyao_bool == True and key_word_bool == True:
+ pantten_zhaiyao = "{}(.*?){}".format(zhaiyao_str,key_word_str )
+ result_biaoti_list = re.findall(pantten_zhaiyao, content)
+ zhaiyao_text = result_biaoti_list[0]
+
+ elif zhaiyao_bool == True and mulu_bool == True:
+ pantten_zhaiyao = "{}(.*?){}".format(zhaiyao_str,mulu_str)
+ result_biaoti_list = re.findall(pantten_zhaiyao, content)
+ zhaiyao_text = result_biaoti_list[0]
+
+ return zhaiyao_text
+
+
+def ulit_request_file(file):
+ file_name = file.filename
+ if file_name.split(".")[-1] == "txt":
+ file_name_save = "data/request/{}".format(file_name)
+ file.save(file_name_save)
+ try:
+ with open(file_name_save, encoding="gbk") as f:
+ content = f.read()
+ except:
+ with open(file_name_save, encoding="utf-8") as f:
+ content = f.read()
+
+ content = content.strip().replace("\n", "").replace(" ", "")
+ abst_zh = uilt_content(content)
+
+ return abst_zh, content
+
+
+
+# @app.route("/", methods=["POST"])
+# def handle_query():
+# print(request.remote_addr)
+#
+# # request.form.get('prompt')
+# dataBases = request.form.get("dataBases")
+# minSimilarity = request.form.get("minSimilarity") # txt
+# minWords = request.form.get("minWords")
+# title = request.form.get("title")
+# author = request.form.get("author") # txt
+# file = request.files.get('file')
+# token = request.form.get("token")
+# account = request.form.get("account")
+# goodsId = request.form.get("goodsId")
+# callbackUrl = request.form.get("callbackUrl")
+#
+#
+# t0 = time.time()
+# abst_zh, content = ulit_request_file(file)
+#
+# # 调用宇鹏查询相似十篇
+# # recall_data_list_dict = recall_10(title, abst_zh, content)
+#
+# t1 = time.time()
+# print("查找相似的50篇完成")
+# with open("data/rell_json.txt") as f:
+# recall_data_list_dict = eval(f.read())
+#
+# # 读取文章转化成格式数据
+# recall_data_list = ulit_recall_paper(recall_data_list_dict)
+# print("文章格式转化完成")
+#
+# # recall_data_list = pd.read_csv("data/10235513_大型商业建筑人员疏散设计研究_沈福禹/查重.csv", encoding="utf-8").values.tolist()
+#
+# # 进入精确查重系统
+# print("进入精确查重系统")
+# return_list = accurate_check_rouge(title, author, content, recall_data_list)
+#
+# print("召回50篇", t1 - t0)
+#
+# return_text = {"resilt": return_list, "probabilities": None, "status_code": 200}
+# return jsonify(return_text) # 返回结果
+
+
+def classify(): # 调用模型,设置最大batch_size
+ while True:
+ if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
+ time.sleep(3)
+ continue
+ query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
+ data_dict_path = json.loads(query)
+ path = data_dict_path['path']
+ # text_type = data_dict["text_type"]
+
+ with open(path, encoding='utf8') as f1:
+ # 加载文件的对象
+ data_dict = json.load(f1)
+
+ query_id = data_dict['id']
+ print(query_id)
+ dataBases = data_dict['dataBases']
+ minSimilarity = data_dict['minSimilarity']
+ minWords = data_dict['minWords']
+ title = data_dict['title']
+ author = data_dict['author']
+ abst_zh = data_dict['abst_zh']
+ content = data_dict['content']
+ token = data_dict['token']
+ account = data_dict['account']
+ goodsId = data_dict['goodsId']
+ callbackUrl = data_dict['callbackUrl']
+
+
+ # 调用宇鹏查询相似十篇
+ # recall_data_list_dict = recall_10(title, abst_zh, content)
+
+ t1 = time.time()
+ print("查找相似的50篇完成")
+ with open("data/rell_json.txt") as f:
+ recall_data_list_dict = eval(f.read())
+
+ # 读取文章转化成格式数据
+ recall_data_list = ulit_recall_paper(recall_data_list_dict)
+ print("文章格式转化完成")
+
+ # recall_data_list = pd.read_csv("data/10235513_大型商业建筑人员疏散设计研究_沈福禹/查重.csv", encoding="utf-8").values.tolist()
+
+ # 进入精确查重系统
+ print("进入精确查重系统")
+ return_list = accurate_check_rouge(title, author, content, recall_data_list)
+
+ return_text = {"resilt": return_list, "probabilities": None, "status_code": 200}
+
+ load_result_path = "./new_data_logs/{}.json".format(query_id)
+
+ print("query_id: ", query_id)
+ print("load_result_path: ", load_result_path)
+
+ with open(load_result_path, 'w', encoding='utf8') as f2:
+ # ensure_ascii=False才能输入中文,否则是Unicode字符
+ # indent=2 JSON数据的缩进,美观
+ json.dump(return_text, f2, ensure_ascii=False, indent=4)
+
+ print(query_id)
+ print(load_result_path)
+ redis_.set(query_id, load_result_path, 86400)
+ redis_.srem(db_key_querying, query_id)
+
+
+@app.route("/", methods=["POST"])
+def handle_query():
+ try:
+ print(request.remote_addr)
+
+ # request.form.get('prompt')
+ dataBases = request.form.get("dataBases")
+ minSimilarity = request.form.get("minSimilarity") # txt
+ minWords = request.form.get("minWords")
+ title = request.form.get("title")
+ author = request.form.get("author") # txt
+ file = request.files.get('file')
+ token = request.form.get("token")
+ account = request.form.get("account")
+ goodsId = request.form.get("goodsId")
+ callbackUrl = request.form.get("callbackUrl")
+
+ abst_zh, content = ulit_request_file(file)
+
+ id_ = str(uuid.uuid1()) # 为query生成唯一标识
+ print("uuid: ", uuid)
+ print(id_)
+ d = {
+ 'id': id_,
+ 'dataBases': dataBases,
+ 'minSimilarity': minSimilarity,
+ 'minWords': minWords,
+ 'title': title,
+ 'author': author,
+ 'abst_zh': abst_zh,
+ 'content': content,
+ 'token': token,
+ 'account': account,
+ 'goodsId': goodsId,
+ 'callbackUrl': callbackUrl
+ }
+
+ # 绑定文本和query id
+ print(d)
+ load_request_path = './request_data_logs/{}.json'.format(id_)
+ with open(load_request_path, 'w', encoding='utf8') as f2:
+ # ensure_ascii=False才能输入中文,否则是Unicode字符
+ # indent=2 JSON数据的缩进,美观
+ json.dump(d, f2, ensure_ascii=False, indent=4)
+ redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis
+ redis_.sadd(db_key_querying, id_)
+ redis_.sadd(db_key_queryset, id_)
+ return_text = {
+ 'code': 0,
+ 'msg': "请求成功",
+ 'data': {
+ 'balances': "",
+ 'orderId': id_,
+ 'consumeNum': ""
+ }
+ }
+
+ print("ok")
+ except:
+ return_text = {'code': 1}
+ return jsonify(return_text) # 返回结果
+
+t = Thread(target=classify)
+t.start()
+
+if __name__ == "__main__":
+ app.run(host="0.0.0.0", port=16001, threaded=True, debug=True)
\ No newline at end of file