diff --git a/flask_check_bert_test.py b/flask_check_bert_test.py index 834e2cf..ac36ec1 100644 --- a/flask_check_bert_test.py +++ b/flask_check_bert_test.py @@ -121,6 +121,287 @@ def rouge_pre_m(text, df_train_nuoche): return return_list +# 以单个章节为例 +def similar_content_func(): + ''' + 重复文章 + :return: + ''' + return [{ + "content": "重复的内容标红", + "thesis_info": "论文标题 + 论文作者 + 来源 + 年份日期--敞开式奶牛舍环境控制系统的设计 李晓红,刘晓丽,余泳昌 - 商丘工学院机械工程学院 - 2015-04-01", + "title": "标题", + "year": "日期", + "degree": "来源", + "author": "作者" + }] + + +def original_text_contrast_func(data_sentence_dan, paper_dict): + ''' + 重复的对比详细信息 + :param similar_content: + :return: + ''' + + + original_text = "" + start = len(data_sentence_dan[0][1]) + end = 0 + similar_content = [] + for i in data_sentence_dan: #可能有很多个暂且确定是一个 + + similar_content_dan = { + "paper_red_len_word": "", + "content": "重复的内容标红", + "thesis_info": "论文标题 + 论文作者 + 来源 + 年份日期--敞开式奶牛舍环境控制系统的设计 李晓红,刘晓丽,余泳昌 - 商丘工学院机械工程学院 - 2015-04-01", + "title": "标题", + "year": "日期", + "degree": "来源", + "author": "作者", + "paper_len_word": "" + } + + sentence_0_bool, sentence_0_dan_red = original_text_marked_red(i[1], paper_dict[i[0]][0], + paper_dict[i[0]][ + 1]) # text_original, bert_text, bert_text_pre + + sentence_1_bool, sentence_1_dan_red = original_text_marked_red(i[2], paper_dict[i[0]][2], + paper_dict[i[0]][ + 3]) # text_original, bert_text, bert_text_pre + + start_dan = sentence_0_dan_red.index("") + end_dan = sentence_0_dan_red.index("") - len("") + + if start_dan < start: + start = start_dan + if end_dan > end: + end = end_dan + + if sentence_0_bool == False or sentence_1_bool == False: + continue + + similar_content_dan["content"] = sentence_1_dan_red + similar_content_dan["title"] = i[3]["title"] + similar_content_dan["author"] = i[3]["author"] + similar_content_dan["degree"] = i[3]["degree"] + similar_content_dan["year"] = i[3]["year"] + similar_content_dan["paper_len_word"] = i[3]["paper_len_word"] + similar_content_dan["paper_red_len_word"] = len(paper_dict[i[0]][3]) + + thesis_info = " ".join( + [similar_content_dan["title"], similar_content_dan["author"], similar_content_dan["degree"], + similar_content_dan["year"]]) + similar_content_dan["thesis_info"] = thesis_info + + similar_content.append(similar_content_dan) + + original_text_list = list(data_sentence_dan[0][1]) + original_text_list.insert(end, "") + original_text_list.insert(start, "") + original_text = "".join(original_text_list) + + return_info = { + "original_text": original_text, + "dan_sentence_word_nums": end - start, + "similar_content": similar_content + } + return return_info + + +def repeat_quote_info_func(original_text_contrast): + ''' + 重复的引用信息 + :return: + ''' + chongfuwendang = {} + + + for sentence_dan in original_text_contrast: + for i in sentence_dan["similar_content"]: + thesis_info = i["thesis_info"] + if thesis_info not in chongfuwendang: + chongfuwendang[thesis_info] = { + "quote": False, + "thesis_author": i["author"], + "thesis_date": i["year"], + "thesis_info": thesis_info, + "thesis_repeat_rate": (i["paper_red_len_word"] / i["paper_len_word"]) * 100, + # round(repetition_rate, 3) * 100 + "thesis_title": i["title"], + "thesis_link": "", + "thesis_publish": i["degree"], + "thesis_repeat_word": i["paper_red_len_word"], + "thesis_teacher": "", + "paper_len_word": i["paper_len_word"] + } + else: + chongfuwendang[thesis_info]["thesis_repeat_word"] += i["paper_red_len_word"] + chongfuwendang[thesis_info]["thesis_repeat_rate"] = (chongfuwendang[thesis_info]["thesis_repeat_word"] / + chongfuwendang[thesis_info]["paper_len_word"]) * 100 + chongfuwendang = sorted(chongfuwendang.items(), + key=lambda x: x[1]["thesis_repeat_rate"], reverse=False) + chongfuwendang_list = [i[1] for i in chongfuwendang] + + return chongfuwendang_list + + +def total_data_func(section_data_list): + ''' + 总体数据 + :return: + ''' + # "end_page_index": 0, + # "name": "第1部分", + # "repeat_rate": repeat_rate, + # "repeat_words": repeat_words, + # "start_page_index": 0, + # "words": section_words, + # "original_text": original_text, + # "original_text_oneself": original_text, + # "original_text_contrast/重复的对比详细信息": original_text_contrast, + # "repeat_quote_info/重复的引用信息": repeat_quote_info + + repeat_words = 0 + words = 0 + + + for i in section_data_list: + repeat_words += i["repeat_words"] + words += i["words"] + + exclude_personal_rate = str(repeat_words/words * 100) + "%" + exclude_quote_rate = str(repeat_words/words * 100) + "%" + single_max_rate = section_data_list[0]["repeat_quote_info"][0]["thesis_repeat_rate"] + single_max_repeat_words = section_data_list[0]["repeat_quote_info"][0]["thesis_repeat_word"] + total_repeat_rate = str(repeat_words/words * 100) + "%" + total_repeat_words = repeat_words + total_words = words + + return { + "back_repeat_words": "", + "exclude_personal_rate": exclude_personal_rate, + "exclude_quote_rate": exclude_quote_rate, + "front_repeat_words": "", + "single_max_rate": single_max_rate, + "single_max_repeat_words": single_max_repeat_words, + "suspected_paragraph": "", + "suspected_paragraph_max_repeat_words": "", + "suspected_paragraph_min_repeat_words": "", + "total_paragraph": "", + "total_repeat_rate": total_repeat_rate, + "total_repeat_words": total_repeat_words, + "total_words": total_words, + "tables": 0 + } + + +def section_data_func_dan(): + ''' + 章节信息单个 + :return: + ''' + # { + # "section_name": "章节名称", + # "section_repeat_rate": "重复率", + # "section_repeat_words": "重复字数", + # "section_words": "章节字数", + # "oneself_repeat_words": "去除本人后重复字数", + # "reference_repeat_words": "去除引用后重复字数", + # "section_oneself_rate": "去除本人后重复率" + # } + + return { + "section_name": "", + "section_repeat_rate": "", + "section_repeat_words": "", + "section_words": "", + "oneself_repeat_words": "", + "reference_repeat_words": "", + "section_oneself_rate": "" + } + +def section_data_func(section_details): + ''' + 章节信息 + :return: + ''' + # "end_page_index": 0, + # "name": "第1部分", + # "repeat_rate": repeat_rate, + # "repeat_words": repeat_words, + # "start_page_index": 0, + # "words": section_words, + # "original_text": original_text, + # "original_text_oneself": original_text, + # "original_text_contrast/重复的对比详细信息": original_text_contrast, + # "repeat_quote_info/重复的引用信息": repeat_quote_info + + section_name = section_details["name"] + section_repeat_rate = section_details["repeat_rate"] + section_repeat_words = section_details["repeat_words"] + section_words = section_details["words"] + oneself_repeat_words = section_details["repeat_words"] + reference_repeat_words = section_details["repeat_words"] + section_oneself_rate = section_details["repeat_rate"] + + return { + "section_name": section_name, + "section_repeat_rate": section_repeat_rate, + "section_repeat_words": section_repeat_words, + "section_words": section_words, + "oneself_repeat_words": oneself_repeat_words, + "reference_repeat_words": reference_repeat_words, + "section_oneself_rate": section_oneself_rate + } + + +def section_details_func(data_section_dan, paper_dict): + ''' + 章节详细信息 + :param original_text_contrast: + :param repeat_quote_info: + :return: + ''' + original_text_contrast = [] + section_repeat_rate = "" + repeat_words = 0 + section_words = 0 + oneself_repeat_words = "" + reference_repeat_words = "" + section_oneself_rate = "" + original_text_list = [] + + for sentence_dan in data_section_dan: + original_text_contrast_dan = original_text_contrast_func(sentence_dan, paper_dict) + original_text_contrast.append(original_text_contrast_dan) + repeat_words += original_text_contrast_dan["dan_sentence_word_nums"] + original_text_list.append(original_text_contrast_dan["original_text"]) + section_words += len(sentence_dan[0][1]) + + original_text = "。".join(original_text_list) + repeat_rate = repeat_words/section_words + + repeat_quote_info = repeat_quote_info_func(original_text_contrast) + + + + + return { + "end_page_index": 0, + "name": "第1部分", + "repeat_rate": repeat_rate, + "repeat_words": repeat_words, + "start_page_index": 0, + "words": section_words, + "original_text": original_text, + "original_text_oneself": original_text, + "original_text_contrast": original_text_contrast, + "repeat_quote_info": repeat_quote_info + } + + + def accurate_check_rouge( title, author, @@ -220,139 +501,59 @@ def accurate_check_rouge( chongfuwendang = {} - for paper_dict_dan_id, sentence_0_dan, sentence_1_dan, sim_paper_name_dan in zip(range(len(paper_dict)), sentence_0_list_new, sentence_1_list_new, sim_paper_name): - - print([sentence_0_dan, sentence_1_dan]) - original_text_contrast_dict = { - "original_text": "", - "similar_content": [ - { - "content": "", - "thesis_info": "", - "title": "", - "year": "", - "degree": "", - "author": "", - } - ] - } - try: - sentence_0_bool, sentence_0_dan_red = original_text_marked_red(sentence_0_dan, paper_dict[paper_dict_dan_id][0], paper_dict[paper_dict_dan_id][1]) # text_original, bert_text, bert_text_pre - except: - print("报错", [sentence_0_dan, paper_dict[paper_dict_dan_id][0], paper_dict[paper_dict_dan_id][1]]) - continue - # 9/0 - sentence_1_bool, sentence_1_dan_red = original_text_marked_red(sentence_1_dan, paper_dict[paper_dict_dan_id][2], paper_dict[paper_dict_dan_id][3]) # text_original, bert_text, bert_text_pre + print("paper_dict", paper_dict) + print("sentence_0_list_new", sentence_0_list_new) + print("sentence_1_list_new", sentence_1_list_new) + print("sim_paper_name", sim_paper_name) + similar_content_control = [[]] - if sentence_0_bool == False or sentence_1_bool == False: - continue + with open("data/10235513_大型商业建筑人员疏散设计研究_沈福禹/paper_dict.json", "w") as f: + json.dump(paper_dict, f, ensure_ascii=False) - dan_sentence_word_nums = len(paper_dict[paper_dict_dan_id][1]) - sentence_word_nums += dan_sentence_word_nums - - original_text.append(sentence_0_dan_red) - original_text_contrast_dict["original_text"] = "此处有 {} 字相似\n".format( - dan_sentence_word_nums) + sentence_0_dan_red - - thesis_info = " ".join([sim_paper_name_dan["title"], sim_paper_name_dan["author"], sim_paper_name_dan["degree"], sim_paper_name_dan["year"]]) - original_text_contrast_dict["similar_content"][0]["content"] = sentence_1_dan_red - original_text_contrast_dict["similar_content"][0]["title"] = sim_paper_name_dan["title"] - original_text_contrast_dict["similar_content"][0]["author"] = sim_paper_name_dan["author"] - original_text_contrast_dict["similar_content"][0]["degree"] = sim_paper_name_dan["degree"] - original_text_contrast_dict["similar_content"][0]["year"] = sim_paper_name_dan["year"] - original_text_contrast_dict["similar_content"][0]["thesis_info"] = thesis_info - - original_text_contrast.append(original_text_contrast_dict) - - # for i in repeat_quote_info: - # if - - if thesis_info not in chongfuwendang: - chongfuwendang[thesis_info] = { - "quote": False, - "thesis_author": sim_paper_name_dan["author"], - "thesis_date" : sim_paper_name_dan["year"], - "thesis_info" : thesis_info, - "thesis_repeat_rate": (dan_sentence_word_nums/sim_paper_name_dan["paper_len_word"]) * 100, #round(repetition_rate, 3) * 100 - "thesis_title": sim_paper_name_dan["title"], - "thesis_link": "", - "thesis_publish": sim_paper_name_dan["degree"], - "thesis_repeat_word": dan_sentence_word_nums, - "thesis_teacher": "", - "paper_len_word": sim_paper_name_dan["paper_len_word"] - } + sentence_0_list_new_cursor = sentence_0_list_new[0] + for paper_dict_dan_id, sentence_0_dan, sentence_1_dan, sim_paper_name_dan in zip(range(len(paper_dict)), + sentence_0_list_new, + sentence_1_list_new, + sim_paper_name): + + if sentence_0_list_new_cursor != sentence_0_dan: + similar_content_control.append([[paper_dict_dan_id, sentence_0_dan, sentence_1_dan, sim_paper_name_dan]]) else: - chongfuwendang[thesis_info]["thesis_repeat_word"] += dan_sentence_word_nums - chongfuwendang[thesis_info]["thesis_repeat_rate"] = (chongfuwendang[thesis_info]["thesis_repeat_word"]/chongfuwendang[thesis_info]["paper_len_word"]) * 100 + similar_content_control[-1].append([paper_dict_dan_id, sentence_0_dan, sentence_1_dan, sim_paper_name_dan]) + data = [similar_content_control] - chongfuwendang = sorted(chongfuwendang.items(), - key=lambda x: x[1]["thesis_repeat_rate"], reverse=False) + # 模拟多个章节 + section_details_list = [] + for data_dan in data: + data_section_dan = data_dan + # 章节详细信息 + section_details = section_details_func(data_section_dan, paper_dict) + section_details_list.append(section_details) - for i in range(len(chongfuwendang)): - repeat_paper_one_info_dict = chongfuwendang[i][1] - repeat_paper_one_info_dict.pop("paper_len_word") - repeat_paper_one_info_dict["thesis_repeat_rate"] = str(round(repeat_paper_one_info_dict["thesis_repeat_rate"], 1)) + "%" - repeat_quote_info.append(repeat_paper_one_info_dict) + # 模拟多个章节 - original_text = "。".join(original_text) + section_data_list = [] + for section_details in section_details_list: + section_data = section_data_func(section_details) - repetition_rate = sentence_word_nums/len(text_paper) - repetition_rate = round(repetition_rate, 3) * 100 + total_data = total_data_func(section_details_list) format = '%Y-%m-%d %H:%M:%S' value = time.localtime(int(time.time())) dt = time.strftime(format, value) - return { + paper_data = { "author": author, "check_time": dt, - "title": title, "time_range": "1900-01-01至2023-08-08", - "section_data": [ - { - "oneself_repeat_words": sentence_word_nums, - "reference_repeat_words": sentence_word_nums, - "section_name": "第1部分", - "section_oneself_rate": "{}%".format(repetition_rate), - "section_repeat_rate": "{}%".format(repetition_rate), - "section_repeat_words": sentence_word_nums, - "section_words": len(text_paper) - } - ], - "section_details": [ - { - "end_page_index": 0, - "name": "", - "repeat_rate": "", - "repeat_words": "", - "words": "", - "original_text": original_text, - "original_text_oneself": original_text, - "original_text_contrast": original_text_contrast, - "repeat_quote_info": repeat_quote_info - } - ], - "total_data": { - "back_repeat_words": "", - "exclude_personal_rate": "{}%".format(repetition_rate), - "exclude_quote_rate": "{}%".format(repetition_rate), - "foot_end_note": "0", - "front_repeat_words": "", - "single_max_rate": "", - "single_max_repeat_words": "", - "suspected_paragraph": "1", - "suspected_paragraph_max_repeat_words": "", - "suspected_paragraph_min_repeat_words": "", - "tables": "0", - "total_paragraph": "1", - "total_repeat_rate": "{}%".format(repetition_rate), - "total_repeat_words": sentence_word_nums, - "total_words": len(text_paper) - } + "title": title, + "total_data": total_data, + "section_data": section_data_list, + "section_details": section_details_list } - + return paper_data @@ -519,28 +720,8 @@ def biaohong_bert_predict(sentence_0_list, sentence_1_list): :return: ''' - # sentence_0_list = [] - # sentence_1_list = [] - # sim_paper_name = [] - # - # for i in biaohong_list: - # sentence_0_list.append("。".join([paper_list[i[0][0]], paper_list[i[0][1]], paper_list[i[0][2]]])) - # sentence_1_list.append("。".join([recall_data_list[i[1][1]], recall_data_list[i[1][1]], recall_data_list[i[1][2]]])) - paper_dict = dialog_line_parse("http://192.168.31.74:16003/", {"sentence_0": sentence_0_list, "sentence_1": sentence_1_list})["resilt"] - # paper_dict - # print("原文:".format(i), paper_dict[i][0]) - # print("原文标红:".format(i), paper_dict[i][1]) - # print("相似:".format(i), paper_dict[i][2]) - # print("相似标红:".format(i), paper_dict[i][3]) - - # original_text - # - # - # for paper_dict_dan, sentence_0_dan, sentence_1_dan in zip(paper_dict, sentence_0_list, sentence_1_list): - # original_text_marked_red - return paper_dict def ulit_text(title, text): @@ -626,7 +807,7 @@ def ulit_recall_paper(recall_data_list_dict): data = [] - for i in list(recall_data_list_dict.items()): + for i in list(recall_data_list_dict.items())[:10]: data_one = processing_one_text(i[0]) data.extend(data_one)