|
|
@ -12,9 +12,18 @@ import requests |
|
|
|
from flask import Flask, jsonify |
|
|
|
from flask import request |
|
|
|
import uuid |
|
|
|
import time |
|
|
|
import redis |
|
|
|
from threading import Thread |
|
|
|
app = Flask(__name__) |
|
|
|
app.config["JSON_AS_ASCII"] = False |
|
|
|
|
|
|
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=7, password="zhicheng123*") |
|
|
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|
|
|
|
|
|
|
db_key_query = 'query' |
|
|
|
db_key_querying = 'querying' |
|
|
|
db_key_queryset = 'queryset' |
|
|
|
|
|
|
|
nums_cpus = 16 |
|
|
|
rouge = Rouge() |
|
|
@ -91,7 +100,12 @@ def rouge_pre(text, df_train_nuoche): |
|
|
|
return return_list |
|
|
|
|
|
|
|
|
|
|
|
def accurate_check_rouge(text_paper, recall_data_list): |
|
|
|
def accurate_check_rouge( |
|
|
|
title, |
|
|
|
author, |
|
|
|
text_paper, |
|
|
|
recall_data_list |
|
|
|
): |
|
|
|
''' |
|
|
|
精确查重出相似句子 |
|
|
|
:param text: |
|
|
@ -99,8 +113,6 @@ def accurate_check_rouge(text_paper, recall_data_list): |
|
|
|
:return: |
|
|
|
''' |
|
|
|
# 文本处理 |
|
|
|
# with open(text_paper_path, encoding="gbk") as f: |
|
|
|
# text_paper = f.read() |
|
|
|
centent_list = [] |
|
|
|
text_paper = str(text_paper).replace("。\n", "。") |
|
|
|
centent_list.extend(text_paper.split("。")) |
|
|
@ -108,25 +120,34 @@ def accurate_check_rouge(text_paper, recall_data_list): |
|
|
|
sentence_word_nums = 0 |
|
|
|
|
|
|
|
# rouge算法查重 |
|
|
|
# for text in centent_list: |
|
|
|
# rouge_pre_list = rouge_pre(text, recall_data_list) |
|
|
|
# data_zong.append(rouge_pre_list) |
|
|
|
|
|
|
|
# bert算法查重 |
|
|
|
for text in centent_list: |
|
|
|
bert_pre_list = bert_check(text, recall_data_list) |
|
|
|
data_zong.append(bert_pre_list) |
|
|
|
rouge_pre_list = rouge_pre(text, recall_data_list) |
|
|
|
data_zong.append(rouge_pre_list) |
|
|
|
|
|
|
|
t0 = time.time() |
|
|
|
# bert算法查重 |
|
|
|
# for text in centent_list: |
|
|
|
# bert_pre_list = bert_check(text, recall_data_list) |
|
|
|
# data_zong.append(bert_pre_list) |
|
|
|
t1 = time.time() |
|
|
|
original_dict = [] |
|
|
|
|
|
|
|
|
|
|
|
# 找出相似的句子序号 |
|
|
|
bool_check_sentense = [] |
|
|
|
# bert算法 |
|
|
|
# for i in range(len(data_zong)): |
|
|
|
# if data_zong[i][0] == 1: |
|
|
|
# bool_check_sentense.append([i,data_zong[i][1]]) |
|
|
|
|
|
|
|
# rouge算法 |
|
|
|
for i in range(len(data_zong)): |
|
|
|
if data_zong[i][0] == 1: |
|
|
|
if data_zong[i][0] > 0.47: |
|
|
|
bool_check_sentense.append([i,data_zong[i][1]]) |
|
|
|
biao_red = biaohong(bool_check_sentense, data_zong, recall_data_list) # [[[0, 1, 2], [479, 480, 481]], [[3, 4, 5], [481, 482, 483]], [[6, 7, 8], [484, 485, 486]]] |
|
|
|
|
|
|
|
print("bert精确查重时间", t1-t0) |
|
|
|
|
|
|
|
|
|
|
|
sentence_0_list = [] |
|
|
|
sentence_1_list = [] |
|
|
@ -151,22 +172,16 @@ def accurate_check_rouge(text_paper, recall_data_list): |
|
|
|
else: |
|
|
|
print(len(i[0]) + len(i[1])) |
|
|
|
continue |
|
|
|
for i in zip(sentence_0_list_new, sentence_1_list_new): |
|
|
|
print("超过字数", len(i[0])) |
|
|
|
print("超过字数", len(i[1])) |
|
|
|
|
|
|
|
t2 = time.time() |
|
|
|
paper_dict = biaohong_bert_predict(sentence_0_list_new, sentence_1_list_new) |
|
|
|
|
|
|
|
# paper_dict |
|
|
|
# print("原文:".format(i), paper_dict[i][0]) |
|
|
|
# print("原文标红:".format(i), paper_dict[i][1]) |
|
|
|
# print("相似:".format(i), paper_dict[i][2]) |
|
|
|
# print("相似标红:".format(i), paper_dict[i][3]) |
|
|
|
|
|
|
|
# original_text |
|
|
|
t3 = time.time() |
|
|
|
print("标红时间", t3 - t2) |
|
|
|
original_text = [] |
|
|
|
original_text_contrast = [] |
|
|
|
repeat_quote_info = [] |
|
|
|
|
|
|
|
chongfuwendang = {} |
|
|
|
|
|
|
|
for paper_dict_dan_id, sentence_0_dan, sentence_1_dan, sim_paper_name_dan in zip(range(len(paper_dict)), sentence_0_list_new, sentence_1_list_new, sim_paper_name): |
|
|
|
|
|
|
@ -184,7 +199,6 @@ def accurate_check_rouge(text_paper, recall_data_list): |
|
|
|
} |
|
|
|
] |
|
|
|
} |
|
|
|
similar_content = {"author": ""} |
|
|
|
try: |
|
|
|
sentence_0_bool, sentence_0_dan_red = original_text_marked_red(sentence_0_dan, paper_dict[paper_dict_dan_id][0], paper_dict[paper_dict_dan_id][1]) # text_original, bert_text, bert_text_pre |
|
|
|
except: |
|
|
@ -203,23 +217,62 @@ def accurate_check_rouge(text_paper, recall_data_list): |
|
|
|
original_text_contrast_dict["original_text"] = "此处有 {} 字相似\n".format( |
|
|
|
dan_sentence_word_nums) + sentence_0_dan_red |
|
|
|
|
|
|
|
# similar_content["content"] = sentence_1_dan_red |
|
|
|
# similar_content["title"] = sim_paper_name_dan |
|
|
|
# original_text_contrast_dict["similar_content"][0] = similar_content |
|
|
|
|
|
|
|
thesis_info = " ".join([sim_paper_name_dan["title"], sim_paper_name_dan["author"], sim_paper_name_dan["degree"], sim_paper_name_dan["year"]]) |
|
|
|
original_text_contrast_dict["similar_content"][0]["content"] = sentence_1_dan_red |
|
|
|
original_text_contrast_dict["similar_content"][0]["title"] = sim_paper_name_dan |
|
|
|
original_text_contrast_dict["similar_content"][0]["title"] = sim_paper_name_dan["title"] |
|
|
|
original_text_contrast_dict["similar_content"][0]["author"] = sim_paper_name_dan["author"] |
|
|
|
original_text_contrast_dict["similar_content"][0]["degree"] = sim_paper_name_dan["degree"] |
|
|
|
original_text_contrast_dict["similar_content"][0]["year"] = sim_paper_name_dan["year"] |
|
|
|
original_text_contrast_dict["similar_content"][0]["thesis_info"] = thesis_info |
|
|
|
|
|
|
|
original_text_contrast.append(original_text_contrast_dict) |
|
|
|
|
|
|
|
# for i in repeat_quote_info: |
|
|
|
# if |
|
|
|
|
|
|
|
if thesis_info not in chongfuwendang: |
|
|
|
chongfuwendang[thesis_info] = { |
|
|
|
"quote": False, |
|
|
|
"thesis_author": sim_paper_name_dan["author"], |
|
|
|
"thesis_date" : sim_paper_name_dan["year"], |
|
|
|
"thesis_info" : thesis_info, |
|
|
|
"thesis_repeat_rate": (dan_sentence_word_nums/sim_paper_name_dan["paper_len_word"]) * 100, #round(repetition_rate, 3) * 100 |
|
|
|
"thesis_title": sim_paper_name_dan["title"], |
|
|
|
"thesis_link": "", |
|
|
|
"thesis_publish": sim_paper_name_dan["degree"], |
|
|
|
"thesis_repeat_word": dan_sentence_word_nums, |
|
|
|
"thesis_teacher": "", |
|
|
|
"paper_len_word": sim_paper_name_dan["paper_len_word"] |
|
|
|
} |
|
|
|
else: |
|
|
|
chongfuwendang[thesis_info]["thesis_repeat_word"] += dan_sentence_word_nums |
|
|
|
chongfuwendang[thesis_info]["thesis_repeat_rate"] = (chongfuwendang[thesis_info]["thesis_repeat_word"]/chongfuwendang[thesis_info]["paper_len_word"]) * 100 |
|
|
|
|
|
|
|
|
|
|
|
chongfuwendang = sorted(chongfuwendang.items(), |
|
|
|
key=lambda x: x[1]["thesis_repeat_rate"], reverse=False) |
|
|
|
|
|
|
|
|
|
|
|
for i in range(len(chongfuwendang)): |
|
|
|
repeat_paper_one_info_dict = chongfuwendang[i][1] |
|
|
|
repeat_paper_one_info_dict.pop("paper_len_word") |
|
|
|
repeat_paper_one_info_dict["thesis_repeat_rate"] = str(round(repeat_paper_one_info_dict["thesis_repeat_rate"], 1)) + "%" |
|
|
|
repeat_quote_info.append(repeat_paper_one_info_dict) |
|
|
|
|
|
|
|
original_text = "。".join(original_text) |
|
|
|
|
|
|
|
repetition_rate = sentence_word_nums/len(text_paper) |
|
|
|
repetition_rate = round(repetition_rate, 3) *100 |
|
|
|
repetition_rate = round(repetition_rate, 3) * 100 |
|
|
|
|
|
|
|
format = '%Y-%m-%d %H:%M:%S' |
|
|
|
value = time.localtime(int(time.time())) |
|
|
|
dt = time.strftime(format, value) |
|
|
|
|
|
|
|
return { |
|
|
|
"author": "", |
|
|
|
"check_time": "", |
|
|
|
"author": author, |
|
|
|
"check_time": dt, |
|
|
|
"title": title, |
|
|
|
"time_range": "1900-01-01至2023-08-08", |
|
|
|
"section_data": [ |
|
|
|
{ |
|
|
|
"oneself_repeat_words": sentence_word_nums, |
|
|
@ -240,11 +293,10 @@ def accurate_check_rouge(text_paper, recall_data_list): |
|
|
|
"words": "", |
|
|
|
"original_text": original_text, |
|
|
|
"original_text_oneself": original_text, |
|
|
|
"original_text_contrast": original_text_contrast |
|
|
|
"original_text_contrast": original_text_contrast, |
|
|
|
"repeat_quote_info": repeat_quote_info |
|
|
|
} |
|
|
|
], |
|
|
|
"time_range": "1900-01-01至2023-08-08", |
|
|
|
"title": "3", |
|
|
|
"total_data": { |
|
|
|
"back_repeat_words": "", |
|
|
|
"exclude_personal_rate": "{}%".format(repetition_rate), |
|
|
@ -329,7 +381,7 @@ def dialog_line_parse(url, text): |
|
|
|
"server. Status Code: {}. Response: {}" |
|
|
|
"".format(url, response.status_code, response.text)) |
|
|
|
print(text) |
|
|
|
return [] |
|
|
|
return {} |
|
|
|
|
|
|
|
|
|
|
|
def is_english_char(char): |
|
|
@ -492,9 +544,11 @@ def processing_one_text(paper_id): |
|
|
|
result = run_query(conn, sql, params) |
|
|
|
|
|
|
|
conn.close() |
|
|
|
print(result) |
|
|
|
print(result[0]['title'], result[0]['author']) |
|
|
|
title = result[0]['title'] |
|
|
|
author = result[0]['author'] |
|
|
|
degree = result[0]['degree'] |
|
|
|
year = result[0]['content'].split("/")[5] |
|
|
|
content_path = result[0]['content'] |
|
|
|
|
|
|
|
try: |
|
|
@ -504,7 +558,14 @@ def processing_one_text(paper_id): |
|
|
|
with open(content_path, encoding="gbk") as f: |
|
|
|
text = f.read() |
|
|
|
|
|
|
|
data = ulit_text(title, text) |
|
|
|
paper_info = { |
|
|
|
"title": title, |
|
|
|
"author": author, |
|
|
|
"degree": degree, |
|
|
|
"year": year, |
|
|
|
"paper_len_word": len(text) |
|
|
|
} |
|
|
|
data = ulit_text(paper_info, text) |
|
|
|
return data |
|
|
|
|
|
|
|
|
|
|
@ -535,7 +596,7 @@ def ulit_recall_paper(recall_data_list_dict): |
|
|
|
return data |
|
|
|
|
|
|
|
|
|
|
|
def recall_10(title, abst_zh, content) -> list: |
|
|
|
def recall_10(title, abst_zh, content) -> dict: |
|
|
|
''' |
|
|
|
宇鹏召回接口 |
|
|
|
:param paper_name: |
|
|
@ -606,8 +667,6 @@ def uilt_content(content): |
|
|
|
result_biaoti_list = re.findall(pantten_zhaiyao, content) |
|
|
|
zhaiyao_text = result_biaoti_list[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return zhaiyao_text |
|
|
|
|
|
|
|
|
|
|
@ -630,8 +689,118 @@ def ulit_request_file(file): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# @app.route("/", methods=["POST"]) |
|
|
|
# def handle_query(): |
|
|
|
# print(request.remote_addr) |
|
|
|
# |
|
|
|
# # request.form.get('prompt') |
|
|
|
# dataBases = request.form.get("dataBases") |
|
|
|
# minSimilarity = request.form.get("minSimilarity") # txt |
|
|
|
# minWords = request.form.get("minWords") |
|
|
|
# title = request.form.get("title") |
|
|
|
# author = request.form.get("author") # txt |
|
|
|
# file = request.files.get('file') |
|
|
|
# token = request.form.get("token") |
|
|
|
# account = request.form.get("account") |
|
|
|
# goodsId = request.form.get("goodsId") |
|
|
|
# callbackUrl = request.form.get("callbackUrl") |
|
|
|
# |
|
|
|
# |
|
|
|
# t0 = time.time() |
|
|
|
# abst_zh, content = ulit_request_file(file) |
|
|
|
# |
|
|
|
# # 调用宇鹏查询相似十篇 |
|
|
|
# # recall_data_list_dict = recall_10(title, abst_zh, content) |
|
|
|
# |
|
|
|
# t1 = time.time() |
|
|
|
# print("查找相似的50篇完成") |
|
|
|
# with open("data/rell_json.txt") as f: |
|
|
|
# recall_data_list_dict = eval(f.read()) |
|
|
|
# |
|
|
|
# # 读取文章转化成格式数据 |
|
|
|
# recall_data_list = ulit_recall_paper(recall_data_list_dict) |
|
|
|
# print("文章格式转化完成") |
|
|
|
# |
|
|
|
# # recall_data_list = pd.read_csv("data/10235513_大型商业建筑人员疏散设计研究_沈福禹/查重.csv", encoding="utf-8").values.tolist() |
|
|
|
# |
|
|
|
# # 进入精确查重系统 |
|
|
|
# print("进入精确查重系统") |
|
|
|
# return_list = accurate_check_rouge(title, author, content, recall_data_list) |
|
|
|
# |
|
|
|
# print("召回50篇", t1 - t0) |
|
|
|
# |
|
|
|
# return_text = {"resilt": return_list, "probabilities": None, "status_code": 200} |
|
|
|
# return jsonify(return_text) # 返回结果 |
|
|
|
|
|
|
|
|
|
|
|
def classify(): # 调用模型,设置最大batch_size |
|
|
|
while True: |
|
|
|
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|
|
|
time.sleep(3) |
|
|
|
continue |
|
|
|
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text |
|
|
|
data_dict_path = json.loads(query) |
|
|
|
path = data_dict_path['path'] |
|
|
|
# text_type = data_dict["text_type"] |
|
|
|
|
|
|
|
with open(path, encoding='utf8') as f1: |
|
|
|
# 加载文件的对象 |
|
|
|
data_dict = json.load(f1) |
|
|
|
|
|
|
|
query_id = data_dict['id'] |
|
|
|
print(query_id) |
|
|
|
dataBases = data_dict['dataBases'] |
|
|
|
minSimilarity = data_dict['minSimilarity'] |
|
|
|
minWords = data_dict['minWords'] |
|
|
|
title = data_dict['title'] |
|
|
|
author = data_dict['author'] |
|
|
|
abst_zh = data_dict['abst_zh'] |
|
|
|
content = data_dict['content'] |
|
|
|
token = data_dict['token'] |
|
|
|
account = data_dict['account'] |
|
|
|
goodsId = data_dict['goodsId'] |
|
|
|
callbackUrl = data_dict['callbackUrl'] |
|
|
|
|
|
|
|
|
|
|
|
# 调用宇鹏查询相似十篇 |
|
|
|
# recall_data_list_dict = recall_10(title, abst_zh, content) |
|
|
|
|
|
|
|
t1 = time.time() |
|
|
|
print("查找相似的50篇完成") |
|
|
|
with open("data/rell_json.txt") as f: |
|
|
|
recall_data_list_dict = eval(f.read()) |
|
|
|
|
|
|
|
# 读取文章转化成格式数据 |
|
|
|
recall_data_list = ulit_recall_paper(recall_data_list_dict) |
|
|
|
print("文章格式转化完成") |
|
|
|
|
|
|
|
# recall_data_list = pd.read_csv("data/10235513_大型商业建筑人员疏散设计研究_沈福禹/查重.csv", encoding="utf-8").values.tolist() |
|
|
|
|
|
|
|
# 进入精确查重系统 |
|
|
|
print("进入精确查重系统") |
|
|
|
return_list = accurate_check_rouge(title, author, content, recall_data_list) |
|
|
|
|
|
|
|
return_text = {"resilt": return_list, "probabilities": None, "status_code": 200} |
|
|
|
|
|
|
|
load_result_path = "./new_data_logs/{}.json".format(query_id) |
|
|
|
|
|
|
|
print("query_id: ", query_id) |
|
|
|
print("load_result_path: ", load_result_path) |
|
|
|
|
|
|
|
with open(load_result_path, 'w', encoding='utf8') as f2: |
|
|
|
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|
|
|
# indent=2 JSON数据的缩进,美观 |
|
|
|
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
|
|
|
|
|
|
|
print(query_id) |
|
|
|
print(load_result_path) |
|
|
|
redis_.set(query_id, load_result_path, 86400) |
|
|
|
redis_.srem(db_key_querying, query_id) |
|
|
|
|
|
|
|
|
|
|
|
@app.route("/", methods=["POST"]) |
|
|
|
def handle_query(): |
|
|
|
try: |
|
|
|
print(request.remote_addr) |
|
|
|
|
|
|
|
# request.form.get('prompt') |
|
|
@ -646,26 +815,53 @@ def handle_query(): |
|
|
|
goodsId = request.form.get("goodsId") |
|
|
|
callbackUrl = request.form.get("callbackUrl") |
|
|
|
|
|
|
|
|
|
|
|
abst_zh, content = ulit_request_file(file) |
|
|
|
# 调用宇鹏查询相似十篇 |
|
|
|
recall_data_list_dict = recall_10(title, abst_zh, content) |
|
|
|
# with open("data/rell_json.txt") as f: |
|
|
|
# recall_data_list_dict = eval(f.read()) |
|
|
|
|
|
|
|
|
|
|
|
# 读取文章转化成格式数据 |
|
|
|
recall_data_list = ulit_recall_paper(recall_data_list_dict) |
|
|
|
|
|
|
|
id_ = str(uuid.uuid1()) # 为query生成唯一标识 |
|
|
|
print("uuid: ", uuid) |
|
|
|
print(id_) |
|
|
|
d = { |
|
|
|
'id': id_, |
|
|
|
'dataBases': dataBases, |
|
|
|
'minSimilarity': minSimilarity, |
|
|
|
'minWords': minWords, |
|
|
|
'title': title, |
|
|
|
'author': author, |
|
|
|
'abst_zh': abst_zh, |
|
|
|
'content': content, |
|
|
|
'token': token, |
|
|
|
'account': account, |
|
|
|
'goodsId': goodsId, |
|
|
|
'callbackUrl': callbackUrl |
|
|
|
} |
|
|
|
|
|
|
|
# recall_data_list = pd.read_csv("data/10235513_大型商业建筑人员疏散设计研究_沈福禹/查重.csv", encoding="utf-8").values.tolist() |
|
|
|
|
|
|
|
# 进入精确查重系统 |
|
|
|
return_list = accurate_check_rouge(content, recall_data_list) |
|
|
|
# 绑定文本和query id |
|
|
|
print(d) |
|
|
|
load_request_path = './request_data_logs/{}.json'.format(id_) |
|
|
|
with open(load_request_path, 'w', encoding='utf8') as f2: |
|
|
|
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
|
|
|
# indent=2 JSON数据的缩进,美观 |
|
|
|
json.dump(d, f2, ensure_ascii=False, indent=4) |
|
|
|
redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis |
|
|
|
redis_.sadd(db_key_querying, id_) |
|
|
|
redis_.sadd(db_key_queryset, id_) |
|
|
|
return_text = { |
|
|
|
'code': 0, |
|
|
|
'msg': "请求成功", |
|
|
|
'data': { |
|
|
|
'balances': "", |
|
|
|
'orderId': id_, |
|
|
|
'consumeNum': "" |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return_text = {"resilt": return_list, "probabilities": None, "status_code": 200} |
|
|
|
print("ok") |
|
|
|
except: |
|
|
|
return_text = {'code': 1} |
|
|
|
return jsonify(return_text) # 返回结果 |
|
|
|
|
|
|
|
t = Thread(target=classify) |
|
|
|
t.start() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
app.run(host="0.0.0.0", port=16001, threaded=True, debug=True) |