You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

192 lines
5.6 KiB

# -*- coding: utf-8 -*-
"""
@Time : 2023/3/16 11:03
@Author :
@FileName:
@Software:
@Describe:
"""
from rouge import Rouge
rouge = Rouge()
from copy import deepcopy
class Rouge_w:
def __init__(self):
self.k = 0.1
self.ki = 1.2
self.p = 1.0
def fi_(self,a):
return a * self.ki
def f(self, a):
return self.k * (a ** 2)
def WLCS(self, X, Y, f):
m = len(X)
n = len(Y)
c = [[0 for j in range(n+1)] for i in range(m+1)]
w = [[0 for j in range(n+1)] for i in range(m+1)]
for i in range(1, m+1):
for j in range(1, n+1):
if X[i-1] == Y[j-1]:
k = w[i-1][j-1]
c[i][j] = c[i-1][j-1] + 10.0 * (f(k+1) - f(k))
w[i][j] = k+1
else:
if c[i-1][j] > c[i][j-1]:
c[i][j] = c[i-1][j]
w[i][j] = 0
else:
c[i][j] = c[i][j-1]
w[i][j] = 0
return c[m][n]
def f_1(self, k):
return k ** 0.5
def f_(self, k):
return k ** 2
# print(WLCS([1,2,5], [1,2,5],f))
def score(self, p, r):
m = len(p)
n = len(r)
wlcs = self.WLCS(p, r, self.f)
p_wlcs = self.f_1(wlcs/self.f_(m))
r_wlcs = self.f_1(wlcs/self.f_(n))
f_lcs = (1 + self.p **2) * ((p_wlcs * r_wlcs) / (p_wlcs + ((self.p ** 2) *r_wlcs) + 1e-8))
return f_lcs
class Rouge_l:
def __init__(self):
self.b = 3
def LCS(self, X, Y):
m = len(X)
n = len(Y)
# 创建一个二维数组来存储中间结果
dp = [[0] * (n + 1) for _ in range(m + 1)]
# 使用动态规划填充dp数组
for i in range(1, m + 1):
for j in range(1, n + 1):
if X[i - 1] == Y[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
return dp[m][n]
# print(WLCS([1,2,5], [1,2,5],f))
def score(self, p, r):
m = len(p)
n = len(r)
lcs = self.LCS(p, r)
p_lcs = lcs/m
r_lcs = lcs/n
f_lcs = ((1 + self.b ** 2) * (p_lcs * r_lcs) / (p_lcs + self.b ** 2 * r_lcs + 1e-8))
return f_lcs
# class Ngrams(object):
# """
# Ngrams datastructure based on `set` or `list`
# depending in `exclusive`
# """
#
# def __init__(self, ngrams={}, exclusive=True):
# if exclusive:
# self._ngrams = set(ngrams)
# else:
# self._ngrams = list(ngrams)
# self.exclusive = exclusive
#
# def add(self, o):
# if self.exclusive:
# self._ngrams.add(o)
# else:
# self._ngrams.append(o)
#
# def __len__(self):
# return len(self._ngrams)
#
# def intersection(self, o):
# if self.exclusive:
# inter_set = self._ngrams.intersection(o._ngrams)
# return Ngrams(inter_set, exclusive=True)
# else:
# other_list = deepcopy(o._ngrams)
# inter_list = []
#
# for e in self._ngrams:
# try:
# i = other_list.index(e)
# except ValueError:
# continue
# other_list.pop(i)
# inter_list.append(e)
# return Ngrams(inter_list, exclusive=False)
#
# def union(self, *ngrams):
# if self.exclusive:
# union_set = self._ngrams
# for o in ngrams:
# union_set = union_set.union(o._ngrams)
# return Ngrams(union_set, exclusive=True)
# else:
# union_list = deepcopy(self._ngrams)
# for o in ngrams:
# union_list.extend(o._ngrams)
# return Ngrams(union_list, exclusive=False)
#
# class Rouge_l:
# def __init__(self):
#
# def score(self, evaluated_sentences, reference_sentences, raw_results=False, exclusive=True, **_):
# if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
# raise ValueError("Collections must contain at least 1 sentence.")
#
# # total number of words in reference sentences
# m = len(
# Ngrams(
# _split_into_words(reference_sentences),
# exclusive=exclusive))
#
# # total number of words in evaluated sentences
# n = len(
# Ngrams(
# _split_into_words(evaluated_sentences),
# exclusive=exclusive))
#
# # print("m,n %d %d" % (m, n))
# union_lcs_sum_across_all_references = 0
# union = Ngrams(exclusive=exclusive)
# for ref_s in reference_sentences:
# lcs_count, union = _union_lcs(evaluated_sentences,
# ref_s,
# prev_union=union,
# exclusive=exclusive)
# union_lcs_sum_across_all_references += lcs_count
#
# llcs = union_lcs_sum_across_all_references
# r_lcs = llcs / m
# p_lcs = llcs / n
#
# f_lcs = 2.0 * ((p_lcs * r_lcs) / (p_lcs + r_lcs + 1e-8))
if __name__ == '__main__':
rouge_model = Rouge_l()
X = ["A", "B", "C", "D", "u", "u", "u", "u", "u", "u"]
Y1 = ["A", "B", "C", "D", "H", "I", "K", "K", "K", "K", "K", "K"]
Y2 = ["A", "H", "B", "K", "C", "I", "K", "K", "K", "K", "K", "K"]
# X = "我爱你"
# Y = "我他爱"
print(rouge_model.score(X, Y1))
# print(WLCS([1,2,5], [1,2,5],f))