You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
413 lines
15 KiB
413 lines
15 KiB
import os
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
|
|
from flask import Flask, jsonify
|
|
from flask import request
|
|
import requests
|
|
import redis
|
|
import uuid
|
|
import json
|
|
from threading import Thread
|
|
import time
|
|
import re
|
|
import logging
|
|
from vllm import LLM, SamplingParams
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG, # 控制台打印的日志级别
|
|
filename='rewrite.log',
|
|
filemode='a', ##模式,有w和a,w就是写模式,每次都会重新写日志,覆盖之前的日志
|
|
# a是追加模式,默认如果不写的话,就是追加模式
|
|
format=
|
|
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
|
|
# 日志格式
|
|
)
|
|
|
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=7, password="zhicheng123*")
|
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
|
|
|
|
db_key_query = 'query'
|
|
db_key_querying = 'querying'
|
|
db_key_queryset = 'queryset'
|
|
batch_size = 32
|
|
|
|
app = Flask(__name__)
|
|
app.config["JSON_AS_ASCII"] = False
|
|
|
|
import logging
|
|
|
|
pattern = r"[。]"
|
|
RE_DIALOG = re.compile(r"\".*?\"|\'.*?\'|“.*?”")
|
|
fuhao_end_sentence = ["。", ",", "?", "!", "…"]
|
|
|
|
# 加载模型
|
|
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=1.1,stop="</s>", max_tokens=4096)
|
|
models_path = "/home/majiahui/model-llm/openbuddy-mistral-7b-v13.1"
|
|
llm = LLM(model=models_path, tokenizer_mode="slow")
|
|
|
|
|
|
class log:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def log(*args, **kwargs):
|
|
format = '%Y/%m/%d-%H:%M:%S'
|
|
format_h = '%Y-%m-%d'
|
|
value = time.localtime(int(time.time()))
|
|
dt = time.strftime(format, value)
|
|
dt_log_file = time.strftime(format_h, value)
|
|
log_file = 'log_file/access-%s' % dt_log_file + ".log"
|
|
if not os.path.exists(log_file):
|
|
with open(os.path.join(log_file), 'w', encoding='utf-8') as f:
|
|
print(dt, *args, file=f, **kwargs)
|
|
else:
|
|
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f:
|
|
print(dt, *args, file=f, **kwargs)
|
|
|
|
|
|
def get_dialogs_index(line: str):
|
|
"""
|
|
获取对话及其索引
|
|
:param line 文本
|
|
:return dialogs 对话内容
|
|
dialogs_index: 对话位置索引
|
|
other_index: 其他内容位置索引
|
|
"""
|
|
dialogs = re.finditer(RE_DIALOG, line)
|
|
dialogs_text = re.findall(RE_DIALOG, line)
|
|
dialogs_index = []
|
|
for dialog in dialogs:
|
|
all_ = [i for i in range(dialog.start(), dialog.end())]
|
|
dialogs_index.extend(all_)
|
|
other_index = [i for i in range(len(line)) if i not in dialogs_index]
|
|
|
|
return dialogs_text, dialogs_index, other_index
|
|
|
|
|
|
def chulichangju_1(text, snetence_id, chulipangban_return_list, short_num):
|
|
fuhao = [",", "?", "!", "…"]
|
|
dialogs_text, dialogs_index, other_index = get_dialogs_index(text)
|
|
text_1 = text[:120]
|
|
text_2 = text[120:]
|
|
text_1_new = ""
|
|
if text_2 == "":
|
|
chulipangban_return_list.append([text_1, snetence_id, short_num])
|
|
return chulipangban_return_list
|
|
for i in range(len(text_1) - 1, -1, -1):
|
|
if text_1[i] in fuhao:
|
|
if i in dialogs_index:
|
|
continue
|
|
text_1_new = text_1[:i]
|
|
text_1_new += text_1[i]
|
|
chulipangban_return_list.append([text_1_new, snetence_id, short_num])
|
|
if text_2 != "":
|
|
if i + 1 != 120:
|
|
text_2 = text_1[i + 1:] + text_2
|
|
break
|
|
# else:
|
|
# chulipangban_return_list.append(text_1)
|
|
if text_1_new == "":
|
|
chulipangban_return_list.append([text_1, snetence_id, short_num])
|
|
if text_2 != "":
|
|
short_num += 1
|
|
chulipangban_return_list = chulichangju_1(text_2, snetence_id, chulipangban_return_list, short_num)
|
|
return chulipangban_return_list
|
|
|
|
|
|
def chulipangban_test_1(snetence_id, text):
|
|
# 引号处理
|
|
|
|
dialogs_text, dialogs_index, other_index = get_dialogs_index(text)
|
|
for dialogs_text_dan in dialogs_text:
|
|
text_dan_list = text.split(dialogs_text_dan)
|
|
text = dialogs_text_dan.join(text_dan_list)
|
|
|
|
# text_new_str = "".join(text_new)
|
|
|
|
sentence_list = text.split("。")
|
|
# sentence_list_new = []
|
|
# for i in sentence_list:
|
|
# if i != "":
|
|
# sentence_list_new.append(i)
|
|
# sentence_list = sentence_list_new
|
|
sentence_batch_list = []
|
|
sentence_batch_one = []
|
|
sentence_batch_length = 0
|
|
return_list = []
|
|
|
|
for sentence in sentence_list[:-1]:
|
|
if len(sentence) < 120:
|
|
sentence_batch_length += len(sentence)
|
|
sentence_batch_list.append([sentence + "。", snetence_id, 0])
|
|
# sentence_pre = autotitle.gen_synonyms_short(sentence)
|
|
# return_list.append(sentence_pre)
|
|
else:
|
|
sentence_split_list = chulichangju_1(sentence, snetence_id, [], 0)
|
|
for sentence_short in sentence_split_list[:-1]:
|
|
sentence_batch_list.append(sentence_short)
|
|
sentence_batch_list.append(sentence_split_list[-1] + "。")
|
|
|
|
if sentence_list[:-1] != "":
|
|
if len(sentence_list[-1]) < 120:
|
|
sentence_batch_length += len(sentence_list[-1])
|
|
sentence_batch_list.append([sentence_list[-1], snetence_id, 0])
|
|
# sentence_pre = autotitle.gen_synonyms_short(sentence)
|
|
# return_list.append(sentence_pre)
|
|
else:
|
|
sentence_split_list = chulichangju_1(sentence_list[-1], snetence_id, [], 0)
|
|
for sentence_short in sentence_split_list:
|
|
sentence_batch_list.append(sentence_short)
|
|
|
|
return sentence_batch_list
|
|
|
|
|
|
def paragraph_test(texts: dict):
|
|
text_new = []
|
|
for i, text in texts.items():
|
|
text_list = chulipangban_test_1(i, text)
|
|
text_new.extend(text_list)
|
|
|
|
# text_new_str = "".join(text_new)
|
|
return text_new
|
|
|
|
|
|
def batch_data_process(text_list):
|
|
sentence_batch_length = 0
|
|
sentence_batch_one = []
|
|
sentence_batch_list = []
|
|
|
|
for sentence in text_list:
|
|
sentence_batch_length += len(sentence[0])
|
|
sentence_batch_one.append(sentence)
|
|
if sentence_batch_length > 500:
|
|
sentence_batch_length = 0
|
|
sentence_ = sentence_batch_one.pop(-1)
|
|
sentence_batch_list.append(sentence_batch_one)
|
|
sentence_batch_one = []
|
|
sentence_batch_one.append(sentence_)
|
|
sentence_batch_list.append(sentence_batch_one)
|
|
return sentence_batch_list
|
|
|
|
|
|
def batch_predict(batch_data_list):
|
|
'''
|
|
一个bacth数据预测
|
|
@param data_text:
|
|
@return:
|
|
'''
|
|
batch_data_list_new = []
|
|
batch_data_text_list = []
|
|
batch_data_snetence_id_list = []
|
|
for i in batch_data_list:
|
|
batch_data_text_list.append(i[0])
|
|
batch_data_snetence_id_list.append(i[1:])
|
|
# batch_pre_data_list = autotitle.generate_beam_search_batch(batch_data_text_list)
|
|
batch_pre_data_list = batch_data_text_list
|
|
for text, sentence_id in zip(batch_pre_data_list, batch_data_snetence_id_list):
|
|
batch_data_list_new.append([text] + sentence_id)
|
|
|
|
return batch_data_list_new
|
|
|
|
|
|
def predict_data_post_processing(text_list):
|
|
text_list_sentence = []
|
|
# text_list_sentence.append([text_list[0][0], text_list[0][1]])
|
|
|
|
for i in range(len(text_list)):
|
|
if text_list[i][2] != 0:
|
|
text_list_sentence[-1][0] += text_list[i][0]
|
|
else:
|
|
text_list_sentence.append([text_list[i][0], text_list[i][1]])
|
|
|
|
return_list = {}
|
|
sentence_one = []
|
|
sentence_id = text_list_sentence[0][1]
|
|
for i in text_list_sentence:
|
|
if i[1] == sentence_id:
|
|
sentence_one.append(i[0])
|
|
else:
|
|
return_list[sentence_id] = "".join(sentence_one)
|
|
sentence_id = i[1]
|
|
sentence_one = []
|
|
sentence_one.append(i[0])
|
|
if sentence_one != []:
|
|
return_list[sentence_id] = "".join(sentence_one)
|
|
return return_list
|
|
|
|
|
|
# def main(text:list):
|
|
# # text_list = paragraph_test(text)
|
|
# # batch_data = batch_data_process(text_list)
|
|
# # text_list = []
|
|
# # for i in batch_data:
|
|
# # text_list.extend(i)
|
|
# # return_list = predict_data_post_processing(text_list)
|
|
# # return return_list
|
|
def pre_sentence_ulit(sentence):
|
|
if "改写后:" in sentence:
|
|
sentence_lable_index = sentence.index("改写后:")
|
|
sentence = sentence[sentence_lable_index + 4:]
|
|
|
|
return sentence
|
|
|
|
def main(texts: dict):
|
|
text_list = paragraph_test(texts)
|
|
|
|
text_info = []
|
|
text_sentence = []
|
|
text_list_new = []
|
|
|
|
# for i in text_list:
|
|
# pre = one_predict(i)
|
|
# text_list_new.append(pre)
|
|
|
|
# vllm预测
|
|
for i in text_list:
|
|
if len(i[0]) > 7:
|
|
text = "You are a helpful assistant.\n\nUser:改写下面这句话,要求意思接近但是改动幅度比较大,字数只能多不能少:\n{}\nAssistant:".format(i[0])
|
|
else:
|
|
text = "You are a helpful assistant.\n\nUser:下面词不做任何变化:\n{}\nAssistant:".format(i[0])
|
|
text_sentence.append(text)
|
|
text_info.append([i[1], i[2]])
|
|
|
|
|
|
outputs = llm.generate(text_sentence, sampling_params) # 调用模型
|
|
|
|
generated_text_list = [""] * len(text_sentence)
|
|
|
|
# generated_text_list = ["" if len(i[0]) > 5 else i[0] for i in text_list]
|
|
|
|
for i, output in enumerate(outputs):
|
|
index = output.request_id
|
|
generated_text = output.outputs[0].text
|
|
generated_text_list[int(index)] = generated_text
|
|
|
|
|
|
for i in range(len(text_list)):
|
|
if len(text_list[i][0]) > 7:
|
|
generated_text_list[i] = pre_sentence_ulit(generated_text_list[i])
|
|
else:
|
|
generated_text_list[i] = text_list[i][0]
|
|
|
|
for i, j in zip(generated_text_list, text_info):
|
|
text_list_new.append([i] + j)
|
|
|
|
return_list = predict_data_post_processing(text_list_new)
|
|
return return_list
|
|
|
|
|
|
# @app.route('/droprepeat/', methods=['POST'])
|
|
# def sentence():
|
|
# print(request.remote_addr)
|
|
# texts = request.json["texts"]
|
|
# text_type = request.json["text_type"]
|
|
# print("原始语句" + str(texts))
|
|
# # question = question.strip('。、!??')
|
|
#
|
|
# if isinstance(texts, dict):
|
|
# texts_list = []
|
|
# y_pred_label_list = []
|
|
# position_list = []
|
|
#
|
|
# # texts = texts.replace('\'', '\"')
|
|
# if texts is None:
|
|
# return_text = {"texts": "输入了空值", "probabilities": None, "status_code": False}
|
|
# return jsonify(return_text)
|
|
# else:
|
|
# assert text_type in ['focus', 'chapter']
|
|
# if text_type == 'focus':
|
|
# texts_list = main(texts)
|
|
# if text_type == 'chapter':
|
|
# texts_list = main(texts)
|
|
# return_text = {"texts": texts_list, "probabilities": None, "status_code": True}
|
|
# else:
|
|
# return_text = {"texts": "输入格式应该为list", "probabilities": None, "status_code": False}
|
|
# return jsonify(return_text)
|
|
|
|
|
|
def classify(): # 调用模型,设置最大batch_size
|
|
while True:
|
|
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
|
|
time.sleep(3)
|
|
continue
|
|
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
|
|
data_dict_path = json.loads(query)
|
|
path = data_dict_path['path']
|
|
# text_type = data_dict["text_type"]
|
|
|
|
with open(path, encoding='utf8') as f1:
|
|
# 加载文件的对象
|
|
data_dict = json.load(f1)
|
|
|
|
query_id = data_dict['id']
|
|
texts = data_dict["text"]
|
|
text_type = data_dict["text_type"]
|
|
|
|
assert text_type in ['focus', 'chapter']
|
|
if text_type == 'focus':
|
|
texts_list = main(texts)
|
|
elif text_type == 'chapter':
|
|
texts_list = main(texts)
|
|
else:
|
|
texts_list = []
|
|
|
|
return_text = {"texts": texts_list, "probabilities": None, "status_code": 200}
|
|
load_result_path = "./new_data_logs/{}.json".format(query_id)
|
|
|
|
print("query_id: ", query_id)
|
|
print("load_result_path: ", load_result_path)
|
|
|
|
with open(load_result_path, 'w', encoding='utf8') as f2:
|
|
# ensure_ascii=False才能输入中文,否则是Unicode字符
|
|
# indent=2 JSON数据的缩进,美观
|
|
json.dump(return_text, f2, ensure_ascii=False, indent=4)
|
|
debug_id_1 = 1
|
|
redis_.set(query_id, load_result_path, 86400)
|
|
debug_id_2 = 2
|
|
redis_.srem(db_key_querying, query_id)
|
|
debug_id_3 = 3
|
|
log.log('start at',
|
|
'query_id:{},load_result_path:{},return_text:{}, debug_id_1:{}, debug_id_2:{}, debug_id_3:{}'.format(
|
|
query_id, load_result_path, return_text, debug_id_1, debug_id_2, debug_id_3))
|
|
|
|
|
|
@app.route("/predict", methods=["POST"])
|
|
def handle_query():
|
|
print(request.remote_addr)
|
|
texts = request.json["texts"]
|
|
text_type = request.json["text_type"]
|
|
if texts is None:
|
|
return_text = {"texts": "输入了空值", "probabilities": None, "status_code": 402}
|
|
return jsonify(return_text)
|
|
if isinstance(texts, dict):
|
|
id_ = str(uuid.uuid1()) # 为query生成唯一标识
|
|
print("uuid: ", uuid)
|
|
d = {'id': id_, 'text': texts, "text_type": text_type} # 绑定文本和query id
|
|
|
|
load_request_path = './request_data_logs/{}.json'.format(id_)
|
|
with open(load_request_path, 'w', encoding='utf8') as f2:
|
|
# ensure_ascii=False才能输入中文,否则是Unicode字符
|
|
# indent=2 JSON数据的缩进,美观
|
|
json.dump(d, f2, ensure_ascii=False, indent=4)
|
|
redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis
|
|
redis_.sadd(db_key_querying, id_)
|
|
redis_.sadd(db_key_queryset, id_)
|
|
return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 200}
|
|
print("ok")
|
|
else:
|
|
return_text = {"texts": "输入格式应该为字典", "probabilities": None, "status_code": 401}
|
|
return jsonify(return_text) # 返回结果
|
|
|
|
|
|
t = Thread(target=classify)
|
|
t.start()
|
|
|
|
if __name__ == "__main__":
|
|
logging.basicConfig(level=logging.DEBUG, # 控制台打印的日志级别
|
|
filename='rewrite.log',
|
|
filemode='a', ##模式,有w和a,w就是写模式,每次都会重新写日志,覆盖之前的日志
|
|
# a是追加模式,默认如果不写的话,就是追加模式
|
|
format=
|
|
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
|
|
# 日志格式
|
|
)
|
|
app.run(host="0.0.0.0", port=14002, threaded=True, debug=False)
|
|
|