
commit
b19375c6ff
9 changed files with 799 additions and 0 deletions
@ -0,0 +1,83 @@ |
|||||
|
from flask import Flask, jsonify |
||||
|
from flask import request |
||||
|
from transformers import pipeline |
||||
|
import redis |
||||
|
import uuid |
||||
|
import json |
||||
|
from threading import Thread |
||||
|
from vllm import LLM, SamplingParams |
||||
|
import time |
||||
|
import threading |
||||
|
import time |
||||
|
import concurrent.futures |
||||
|
import requests |
||||
|
import socket |
||||
|
|
||||
|
def get_host_ip(): |
||||
|
""" |
||||
|
查询本机ip地址 |
||||
|
:return: ip |
||||
|
""" |
||||
|
try: |
||||
|
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) |
||||
|
s.connect(('8.8.8.8', 80)) |
||||
|
ip = s.getsockname()[0] |
||||
|
finally: |
||||
|
s.close() |
||||
|
|
||||
|
return ip |
||||
|
|
||||
|
app = Flask(__name__) |
||||
|
app.config["JSON_AS_ASCII"] = False |
||||
|
|
||||
|
def dialog_line_parse(url, text): |
||||
|
""" |
||||
|
将数据输入模型进行分析并输出结果 |
||||
|
:param url: 模型url |
||||
|
:param text: 进入模型的数据 |
||||
|
:return: 模型返回结果 |
||||
|
""" |
||||
|
|
||||
|
response = requests.post( |
||||
|
url, |
||||
|
json=text, |
||||
|
timeout=1000 |
||||
|
) |
||||
|
if response.status_code == 200: |
||||
|
return response.json() |
||||
|
else: |
||||
|
# logger.error( |
||||
|
# "【{}】 Failed to get a proper response from remote " |
||||
|
# "server. Status Code: {}. Response: {}" |
||||
|
# "".format(url, response.status_code, response.text) |
||||
|
# ) |
||||
|
print("【{}】 Failed to get a proper response from remote " |
||||
|
"server. Status Code: {}. Response: {}" |
||||
|
"".format(url, response.status_code, response.text)) |
||||
|
print(text) |
||||
|
return [] |
||||
|
|
||||
|
@app.route("/articles_directory", methods=["POST"]) |
||||
|
def articles_directory(): |
||||
|
text = request.json["texts"] # 获取用户query中的文本 例如"I love you" |
||||
|
nums = request.json["nums"] |
||||
|
|
||||
|
nums = int(nums) |
||||
|
url = "http://{}:18001/predict".format(str(get_host_ip())) |
||||
|
|
||||
|
input_data = [] |
||||
|
for i in range(nums): |
||||
|
input_data.append([url, {"texts": "You are a helpful assistant.\n\nUser:{}\nAssistant:".format(text)}]) |
||||
|
|
||||
|
|
||||
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
||||
|
# 使用submit方法将任务提交给线程池,并获取Future对象 |
||||
|
futures = [executor.submit(dialog_line_parse, i[0], i[1]) for i in input_data] |
||||
|
|
||||
|
# 使用as_completed获取已完成的任务,并获取返回值 |
||||
|
results = [future.result() for future in concurrent.futures.as_completed(futures)] |
||||
|
|
||||
|
return jsonify(results) # 返回结果 |
||||
|
|
||||
|
if __name__ == "__main__": |
||||
|
app.run(debug=False, host='0.0.0.0', port=18000) |
@ -0,0 +1,414 @@ |
|||||
|
import os |
||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "2" |
||||
|
from flask import Flask, jsonify |
||||
|
from flask import request |
||||
|
import requests |
||||
|
import redis |
||||
|
import uuid |
||||
|
import json |
||||
|
from threading import Thread |
||||
|
import time |
||||
|
import re |
||||
|
import logging |
||||
|
from vllm import LLM, SamplingParams |
||||
|
|
||||
|
|
||||
|
logging.basicConfig(level=logging.DEBUG, # 控制台打印的日志级别 |
||||
|
filename='rewrite.log', |
||||
|
filemode='a', ##模式,有w和a,w就是写模式,每次都会重新写日志,覆盖之前的日志 |
||||
|
# a是追加模式,默认如果不写的话,就是追加模式 |
||||
|
format= |
||||
|
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s' |
||||
|
# 日志格式 |
||||
|
) |
||||
|
|
||||
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=7, password="zhicheng123*") |
||||
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
||||
|
|
||||
|
db_key_query = 'query' |
||||
|
db_key_querying = 'querying' |
||||
|
db_key_queryset = 'queryset' |
||||
|
batch_size = 32 |
||||
|
|
||||
|
app = Flask(__name__) |
||||
|
app.config["JSON_AS_ASCII"] = False |
||||
|
|
||||
|
import logging |
||||
|
|
||||
|
pattern = r"[。]" |
||||
|
RE_DIALOG = re.compile(r"\".*?\"|\'.*?\'|“.*?”") |
||||
|
fuhao_end_sentence = ["。", ",", "?", "!", "…"] |
||||
|
|
||||
|
# 加载模型 |
||||
|
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=1.1,stop="</s>", max_tokens=4096) |
||||
|
models_path = "/home/majiahui/model-llm/openbuddy-mistral-7b-v13.1" |
||||
|
llm = LLM(model=models_path, tokenizer_mode="slow") |
||||
|
|
||||
|
|
||||
|
class log: |
||||
|
def __init__(self): |
||||
|
pass |
||||
|
|
||||
|
def log(*args, **kwargs): |
||||
|
format = '%Y/%m/%d-%H:%M:%S' |
||||
|
format_h = '%Y-%m-%d' |
||||
|
value = time.localtime(int(time.time())) |
||||
|
dt = time.strftime(format, value) |
||||
|
dt_log_file = time.strftime(format_h, value) |
||||
|
log_file = 'log_file/access-%s' % dt_log_file + ".log" |
||||
|
if not os.path.exists(log_file): |
||||
|
with open(os.path.join(log_file), 'w', encoding='utf-8') as f: |
||||
|
print(dt, *args, file=f, **kwargs) |
||||
|
else: |
||||
|
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f: |
||||
|
print(dt, *args, file=f, **kwargs) |
||||
|
|
||||
|
|
||||
|
def get_dialogs_index(line: str): |
||||
|
""" |
||||
|
获取对话及其索引 |
||||
|
:param line 文本 |
||||
|
:return dialogs 对话内容 |
||||
|
dialogs_index: 对话位置索引 |
||||
|
other_index: 其他内容位置索引 |
||||
|
""" |
||||
|
dialogs = re.finditer(RE_DIALOG, line) |
||||
|
dialogs_text = re.findall(RE_DIALOG, line) |
||||
|
dialogs_index = [] |
||||
|
for dialog in dialogs: |
||||
|
all_ = [i for i in range(dialog.start(), dialog.end())] |
||||
|
dialogs_index.extend(all_) |
||||
|
other_index = [i for i in range(len(line)) if i not in dialogs_index] |
||||
|
|
||||
|
return dialogs_text, dialogs_index, other_index |
||||
|
|
||||
|
|
||||
|
def chulichangju_1(text, snetence_id, chulipangban_return_list, short_num): |
||||
|
fuhao = [",", "?", "!", "…"] |
||||
|
dialogs_text, dialogs_index, other_index = get_dialogs_index(text) |
||||
|
text_1 = text[:120] |
||||
|
text_2 = text[120:] |
||||
|
text_1_new = "" |
||||
|
if text_2 == "": |
||||
|
chulipangban_return_list.append([text_1, snetence_id, short_num]) |
||||
|
return chulipangban_return_list |
||||
|
for i in range(len(text_1) - 1, -1, -1): |
||||
|
if text_1[i] in fuhao: |
||||
|
if i in dialogs_index: |
||||
|
continue |
||||
|
text_1_new = text_1[:i] |
||||
|
text_1_new += text_1[i] |
||||
|
chulipangban_return_list.append([text_1_new, snetence_id, short_num]) |
||||
|
if text_2 != "": |
||||
|
if i + 1 != 120: |
||||
|
text_2 = text_1[i + 1:] + text_2 |
||||
|
break |
||||
|
# else: |
||||
|
# chulipangban_return_list.append(text_1) |
||||
|
if text_1_new == "": |
||||
|
chulipangban_return_list.append([text_1, snetence_id, short_num]) |
||||
|
if text_2 != "": |
||||
|
short_num += 1 |
||||
|
chulipangban_return_list = chulichangju_1(text_2, snetence_id, chulipangban_return_list, short_num) |
||||
|
return chulipangban_return_list |
||||
|
|
||||
|
|
||||
|
def chulipangban_test_1(snetence_id, text): |
||||
|
# 引号处理 |
||||
|
|
||||
|
dialogs_text, dialogs_index, other_index = get_dialogs_index(text) |
||||
|
for dialogs_text_dan in dialogs_text: |
||||
|
text_dan_list = text.split(dialogs_text_dan) |
||||
|
text = dialogs_text_dan.join(text_dan_list) |
||||
|
|
||||
|
# text_new_str = "".join(text_new) |
||||
|
|
||||
|
sentence_list = text.split("。") |
||||
|
# sentence_list_new = [] |
||||
|
# for i in sentence_list: |
||||
|
# if i != "": |
||||
|
# sentence_list_new.append(i) |
||||
|
# sentence_list = sentence_list_new |
||||
|
sentence_batch_list = [] |
||||
|
sentence_batch_one = [] |
||||
|
sentence_batch_length = 0 |
||||
|
return_list = [] |
||||
|
|
||||
|
for sentence in sentence_list[:-1]: |
||||
|
if len(sentence) < 120: |
||||
|
sentence_batch_length += len(sentence) |
||||
|
sentence_batch_list.append([sentence + "。", snetence_id, 0]) |
||||
|
# sentence_pre = autotitle.gen_synonyms_short(sentence) |
||||
|
# return_list.append(sentence_pre) |
||||
|
else: |
||||
|
sentence_split_list = chulichangju_1(sentence, snetence_id, [], 0) |
||||
|
for sentence_short in sentence_split_list[:-1]: |
||||
|
sentence_batch_list.append(sentence_short) |
||||
|
sentence_batch_list.append(sentence_split_list[-1] + "。") |
||||
|
|
||||
|
if sentence_list[:-1] != "": |
||||
|
if len(sentence_list[-1]) < 120: |
||||
|
sentence_batch_length += len(sentence_list[-1]) |
||||
|
sentence_batch_list.append([sentence_list[-1], snetence_id, 0]) |
||||
|
# sentence_pre = autotitle.gen_synonyms_short(sentence) |
||||
|
# return_list.append(sentence_pre) |
||||
|
else: |
||||
|
sentence_split_list = chulichangju_1(sentence_list[-1], snetence_id, [], 0) |
||||
|
for sentence_short in sentence_split_list: |
||||
|
sentence_batch_list.append(sentence_short) |
||||
|
|
||||
|
return sentence_batch_list |
||||
|
|
||||
|
|
||||
|
def paragraph_test(texts: dict): |
||||
|
text_new = [] |
||||
|
for i, text in texts.items(): |
||||
|
text_list = chulipangban_test_1(i, text) |
||||
|
text_new.extend(text_list) |
||||
|
|
||||
|
# text_new_str = "".join(text_new) |
||||
|
return text_new |
||||
|
|
||||
|
|
||||
|
def batch_data_process(text_list): |
||||
|
sentence_batch_length = 0 |
||||
|
sentence_batch_one = [] |
||||
|
sentence_batch_list = [] |
||||
|
|
||||
|
for sentence in text_list: |
||||
|
sentence_batch_length += len(sentence[0]) |
||||
|
sentence_batch_one.append(sentence) |
||||
|
if sentence_batch_length > 500: |
||||
|
sentence_batch_length = 0 |
||||
|
sentence_ = sentence_batch_one.pop(-1) |
||||
|
sentence_batch_list.append(sentence_batch_one) |
||||
|
sentence_batch_one = [] |
||||
|
sentence_batch_one.append(sentence_) |
||||
|
sentence_batch_list.append(sentence_batch_one) |
||||
|
return sentence_batch_list |
||||
|
|
||||
|
|
||||
|
def batch_predict(batch_data_list): |
||||
|
''' |
||||
|
一个bacth数据预测 |
||||
|
@param data_text: |
||||
|
@return: |
||||
|
''' |
||||
|
batch_data_list_new = [] |
||||
|
batch_data_text_list = [] |
||||
|
batch_data_snetence_id_list = [] |
||||
|
for i in batch_data_list: |
||||
|
batch_data_text_list.append(i[0]) |
||||
|
batch_data_snetence_id_list.append(i[1:]) |
||||
|
# batch_pre_data_list = autotitle.generate_beam_search_batch(batch_data_text_list) |
||||
|
batch_pre_data_list = batch_data_text_list |
||||
|
for text, sentence_id in zip(batch_pre_data_list, batch_data_snetence_id_list): |
||||
|
batch_data_list_new.append([text] + sentence_id) |
||||
|
|
||||
|
return batch_data_list_new |
||||
|
|
||||
|
|
||||
|
def predict_data_post_processing(text_list): |
||||
|
text_list_sentence = [] |
||||
|
# text_list_sentence.append([text_list[0][0], text_list[0][1]]) |
||||
|
|
||||
|
for i in range(len(text_list)): |
||||
|
if text_list[i][2] != 0: |
||||
|
text_list_sentence[-1][0] += text_list[i][0] |
||||
|
else: |
||||
|
text_list_sentence.append([text_list[i][0], text_list[i][1]]) |
||||
|
|
||||
|
return_list = {} |
||||
|
sentence_one = [] |
||||
|
sentence_id = text_list_sentence[0][1] |
||||
|
for i in text_list_sentence: |
||||
|
if i[1] == sentence_id: |
||||
|
sentence_one.append(i[0]) |
||||
|
else: |
||||
|
return_list[sentence_id] = "".join(sentence_one) |
||||
|
sentence_id = i[1] |
||||
|
sentence_one = [] |
||||
|
sentence_one.append(i[0]) |
||||
|
if sentence_one != []: |
||||
|
return_list[sentence_id] = "".join(sentence_one) |
||||
|
return return_list |
||||
|
|
||||
|
|
||||
|
# def main(text:list): |
||||
|
# # text_list = paragraph_test(text) |
||||
|
# # batch_data = batch_data_process(text_list) |
||||
|
# # text_list = [] |
||||
|
# # for i in batch_data: |
||||
|
# # text_list.extend(i) |
||||
|
# # return_list = predict_data_post_processing(text_list) |
||||
|
# # return return_list |
||||
|
def pre_sentence_ulit(sentence): |
||||
|
if "改写后:" in sentence: |
||||
|
sentence_lable_index = sentence.index("改写后:") |
||||
|
sentence = sentence[sentence_lable_index + 4:] |
||||
|
|
||||
|
return sentence |
||||
|
|
||||
|
def main(texts: dict): |
||||
|
text_list = paragraph_test(texts) |
||||
|
|
||||
|
text_info = [] |
||||
|
text_sentence = [] |
||||
|
text_list_new = [] |
||||
|
|
||||
|
# for i in text_list: |
||||
|
# pre = one_predict(i) |
||||
|
# text_list_new.append(pre) |
||||
|
|
||||
|
# vllm预测 |
||||
|
for i in text_list: |
||||
|
if len(i[0]) > 7: |
||||
|
text = "You are a helpful assistant.\n\nUser:改写下面这句话,要求意思接近但是改动幅度比较大,字数只能多不能少:\n{}\nAssistant:".format(i[0]) |
||||
|
else: |
||||
|
text = "You are a helpful assistant.\n\nUser:下面词不做任何变化:\n{}\nAssistant:".format(i[0]) |
||||
|
text_sentence.append(text) |
||||
|
text_info.append([i[1], i[2]]) |
||||
|
|
||||
|
|
||||
|
outputs = llm.generate(text_sentence, sampling_params) # 调用模型 |
||||
|
|
||||
|
generated_text_list = [""] * len(text_sentence) |
||||
|
|
||||
|
# generated_text_list = ["" if len(i[0]) > 5 else i[0] for i in text_list] |
||||
|
|
||||
|
for i, output in enumerate(outputs): |
||||
|
index = output.request_id |
||||
|
generated_text = output.outputs[0].text |
||||
|
generated_text = pre_sentence_ulit(generated_text) |
||||
|
generated_text_list[int(index)] = generated_text |
||||
|
|
||||
|
|
||||
|
for i in range(len(text_list)): |
||||
|
if len(text_list[i][0]) > 7: |
||||
|
continue |
||||
|
else: |
||||
|
generated_text_list[i] = text_list[i][0] |
||||
|
|
||||
|
for i, j in zip(generated_text_list, text_info): |
||||
|
text_list_new.append([i] + j) |
||||
|
|
||||
|
return_list = predict_data_post_processing(text_list_new) |
||||
|
return return_list |
||||
|
|
||||
|
|
||||
|
# @app.route('/droprepeat/', methods=['POST']) |
||||
|
# def sentence(): |
||||
|
# print(request.remote_addr) |
||||
|
# texts = request.json["texts"] |
||||
|
# text_type = request.json["text_type"] |
||||
|
# print("原始语句" + str(texts)) |
||||
|
# # question = question.strip('。、!??') |
||||
|
# |
||||
|
# if isinstance(texts, dict): |
||||
|
# texts_list = [] |
||||
|
# y_pred_label_list = [] |
||||
|
# position_list = [] |
||||
|
# |
||||
|
# # texts = texts.replace('\'', '\"') |
||||
|
# if texts is None: |
||||
|
# return_text = {"texts": "输入了空值", "probabilities": None, "status_code": False} |
||||
|
# return jsonify(return_text) |
||||
|
# else: |
||||
|
# assert text_type in ['focus', 'chapter'] |
||||
|
# if text_type == 'focus': |
||||
|
# texts_list = main(texts) |
||||
|
# if text_type == 'chapter': |
||||
|
# texts_list = main(texts) |
||||
|
# return_text = {"texts": texts_list, "probabilities": None, "status_code": True} |
||||
|
# else: |
||||
|
# return_text = {"texts": "输入格式应该为list", "probabilities": None, "status_code": False} |
||||
|
# return jsonify(return_text) |
||||
|
|
||||
|
|
||||
|
def classify(): # 调用模型,设置最大batch_size |
||||
|
while True: |
||||
|
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
||||
|
time.sleep(3) |
||||
|
continue |
||||
|
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text |
||||
|
data_dict_path = json.loads(query) |
||||
|
path = data_dict_path['path'] |
||||
|
# text_type = data_dict["text_type"] |
||||
|
|
||||
|
with open(path, encoding='utf8') as f1: |
||||
|
# 加载文件的对象 |
||||
|
data_dict = json.load(f1) |
||||
|
|
||||
|
query_id = data_dict['id'] |
||||
|
texts = data_dict["text"] |
||||
|
text_type = data_dict["text_type"] |
||||
|
|
||||
|
assert text_type in ['focus', 'chapter'] |
||||
|
if text_type == 'focus': |
||||
|
texts_list = main(texts) |
||||
|
elif text_type == 'chapter': |
||||
|
texts_list = main(texts) |
||||
|
else: |
||||
|
texts_list = [] |
||||
|
|
||||
|
return_text = {"texts": texts_list, "probabilities": None, "status_code": 200} |
||||
|
load_result_path = "./new_data_logs/{}.json".format(query_id) |
||||
|
|
||||
|
print("query_id: ", query_id) |
||||
|
print("load_result_path: ", load_result_path) |
||||
|
|
||||
|
with open(load_result_path, 'w', encoding='utf8') as f2: |
||||
|
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
||||
|
# indent=2 JSON数据的缩进,美观 |
||||
|
json.dump(return_text, f2, ensure_ascii=False, indent=4) |
||||
|
debug_id_1 = 1 |
||||
|
redis_.set(query_id, load_result_path, 86400) |
||||
|
debug_id_2 = 2 |
||||
|
redis_.srem(db_key_querying, query_id) |
||||
|
debug_id_3 = 3 |
||||
|
log.log('start at', |
||||
|
'query_id:{},load_result_path:{},return_text:{}, debug_id_1:{}, debug_id_2:{}, debug_id_3:{}'.format( |
||||
|
query_id, load_result_path, return_text, debug_id_1, debug_id_2, debug_id_3)) |
||||
|
|
||||
|
|
||||
|
@app.route("/predict", methods=["POST"]) |
||||
|
def handle_query(): |
||||
|
print(request.remote_addr) |
||||
|
texts = request.json["texts"] |
||||
|
text_type = request.json["text_type"] |
||||
|
if texts is None: |
||||
|
return_text = {"texts": "输入了空值", "probabilities": None, "status_code": 402} |
||||
|
return jsonify(return_text) |
||||
|
if isinstance(texts, dict): |
||||
|
id_ = str(uuid.uuid1()) # 为query生成唯一标识 |
||||
|
print("uuid: ", uuid) |
||||
|
d = {'id': id_, 'text': texts, "text_type": text_type} # 绑定文本和query id |
||||
|
|
||||
|
load_request_path = './request_data_logs/{}.json'.format(id_) |
||||
|
with open(load_request_path, 'w', encoding='utf8') as f2: |
||||
|
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
||||
|
# indent=2 JSON数据的缩进,美观 |
||||
|
json.dump(d, f2, ensure_ascii=False, indent=4) |
||||
|
redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis |
||||
|
redis_.sadd(db_key_querying, id_) |
||||
|
redis_.sadd(db_key_queryset, id_) |
||||
|
return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 200} |
||||
|
print("ok") |
||||
|
else: |
||||
|
return_text = {"texts": "输入格式应该为字典", "probabilities": None, "status_code": 401} |
||||
|
return jsonify(return_text) # 返回结果 |
||||
|
|
||||
|
|
||||
|
t = Thread(target=classify) |
||||
|
t.start() |
||||
|
|
||||
|
if __name__ == "__main__": |
||||
|
logging.basicConfig(level=logging.DEBUG, # 控制台打印的日志级别 |
||||
|
filename='rewrite.log', |
||||
|
filemode='a', ##模式,有w和a,w就是写模式,每次都会重新写日志,覆盖之前的日志 |
||||
|
# a是追加模式,默认如果不写的话,就是追加模式 |
||||
|
format= |
||||
|
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s' |
||||
|
# 日志格式 |
||||
|
) |
||||
|
app.run(host="0.0.0.0", port=14002, threaded=True, debug=False) |
@ -0,0 +1,67 @@ |
|||||
|
import flask |
||||
|
from transformers import pipeline |
||||
|
import redis |
||||
|
import uuid |
||||
|
import json |
||||
|
from threading import Thread |
||||
|
import time |
||||
|
|
||||
|
app = flask.Flask(__name__) |
||||
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=5, password="zhicheng123*") |
||||
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
||||
|
|
||||
|
db_key_query = 'query' |
||||
|
db_key_result = 'result' |
||||
|
|
||||
|
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=1.1,stop="</s>", max_tokens=4096) |
||||
|
models_path = "/home/majiahui/model-llm/openbuddy-mistral-7b-v13.1" |
||||
|
llm = LLM(model=models_path, tokenizer_mode="slow") |
||||
|
|
||||
|
def mistral_vllm_models(texts): |
||||
|
outputs = llm.generate(texts, sampling_params) # 调用模型 |
||||
|
|
||||
|
generated_text_list = [""] * len(texts) |
||||
|
|
||||
|
# generated_text_list = ["" if len(i[0]) > 5 else i[0] for i in text_list] |
||||
|
|
||||
|
for i, output in enumerate(outputs): |
||||
|
index = output.request_id |
||||
|
generated_text = output.outputs[0].text |
||||
|
generated_text_list[int(index)] = generated_text |
||||
|
|
||||
|
|
||||
|
def classify(batch_size): # 调用模型,设置最大batch_size |
||||
|
while True: |
||||
|
texts = [] |
||||
|
query_ids = [] |
||||
|
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
||||
|
continue |
||||
|
for i in range(min(redis_.llen(db_key_query), batch_size)): |
||||
|
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text |
||||
|
query_ids.append(json.loads(query)['id']) |
||||
|
texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
||||
|
result = mistral_vllm_models(texts) # 调用模型 |
||||
|
for (id_, res) in zip(query_ids, result): |
||||
|
res['score'] = str(res['score']) |
||||
|
redis_.set(id_, json.dumps(res)) # 将模型结果送回队列 |
||||
|
|
||||
|
|
||||
|
@app.route("/predict", methods=["POST"]) |
||||
|
def handle_query(): |
||||
|
text = flask.request.form['text'] # 获取用户query中的文本 例如"I love you" |
||||
|
id_ = str(uuid.uuid1()) # 为query生成唯一标识 |
||||
|
d = {'id': id_, 'text': text} # 绑定文本和query id |
||||
|
redis_.rpush(db_key_query, json.dumps(d)) # 加入redis |
||||
|
while True: |
||||
|
result = redis_.get(id_) # 获取该query的模型结果 |
||||
|
if result is not None: |
||||
|
redis_.delete(id_) |
||||
|
result_text = {'code': "200", 'data': result.decode('UTF-8')} |
||||
|
break |
||||
|
return flask.jsonify(result_text) # 返回结果 |
||||
|
|
||||
|
|
||||
|
if __name__ == "__main__": |
||||
|
t = Thread(target=classify) |
||||
|
t.start() |
||||
|
app.run(debug=False, host='127.0.0.1', port=9000) |
@ -0,0 +1,24 @@ |
|||||
|
import os |
||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "3" |
||||
|
from vllm import LLM, SamplingParams |
||||
|
|
||||
|
# Sample prompts. |
||||
|
prompts = [ |
||||
|
"You are a helpful assistant.\n\nUser:张亮的爸爸叫张明,张明的爸爸有三个孩子,大儿子叫张大,二儿子叫张昊,三儿子叫什么?\nAssistant:", |
||||
|
"You are a helpful assistant.\n\nUser:你好\nAssistant:", |
||||
|
"You are a helpful assistant.\n\nUser:1+1等于几\nAssistant:", |
||||
|
"You are a helpful assistant.\n\nUser:你是谁\nAssistant:", |
||||
|
] |
||||
|
# Create a sampling params object. |
||||
|
sampling_params = SamplingParams(temperature=0, top_p=1, presence_penalty=0.9, max_tokens=1024) |
||||
|
|
||||
|
# Create an LLM. |
||||
|
llm = LLM(model="/home/majiahui/project/models-llm/openbuddy-mistral-7b-v13.1", trust_remote_code=True) |
||||
|
# Generate texts from the prompts. The output is a list of RequestOutput objects |
||||
|
# that contain the prompt, generated text, and other information. |
||||
|
outputs = llm.generate(prompts, sampling_params) |
||||
|
# Print the outputs. |
||||
|
for output in outputs: |
||||
|
prompt = output.prompt |
||||
|
generated_text = output.outputs[0].text |
||||
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
@ -0,0 +1,87 @@ |
|||||
|
# -*- coding: utf-8 -*- |
||||
|
|
||||
|
""" |
||||
|
@Time : 2023/3/2 19:31 |
||||
|
@Author : |
||||
|
@FileName: |
||||
|
@Software: |
||||
|
@Describe: |
||||
|
""" |
||||
|
# |
||||
|
# import redis |
||||
|
# |
||||
|
# redis_pool = redis.ConnectionPool(host='127.0.0.1', port=6379, password='', db=0) |
||||
|
# redis_conn = redis.Redis(connection_pool=redis_pool) |
||||
|
# |
||||
|
# |
||||
|
# name_dict = { |
||||
|
# 'name_4' : 'Zarten_4', |
||||
|
# 'name_5' : 'Zarten_5' |
||||
|
# } |
||||
|
# redis_conn.mset(name_dict) |
||||
|
|
||||
|
import flask |
||||
|
import redis |
||||
|
import uuid |
||||
|
import json |
||||
|
from threading import Thread |
||||
|
import time |
||||
|
|
||||
|
app = flask.Flask(__name__) |
||||
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=7, password="zhicheng123*") |
||||
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
||||
|
|
||||
|
db_key_query = 'query' |
||||
|
db_key_querying = 'querying' |
||||
|
|
||||
|
@app.route("/search", methods=["POST"]) |
||||
|
def handle_query(): |
||||
|
id_ = flask.request.json['id'] # 获取用户query中的文本 例如"I love you" |
||||
|
result = redis_.get(id_) # 获取该query的模型结果 |
||||
|
if result is not None: |
||||
|
# redis_.delete(id_) |
||||
|
result_path = result.decode('UTF-8') |
||||
|
with open(result_path, encoding='utf8') as f1: |
||||
|
# 加载文件的对象 |
||||
|
result_dict = json.load(f1) |
||||
|
texts = result_dict["texts"] |
||||
|
probabilities = result_dict["probabilities"] |
||||
|
result_text = {'code': 200, 'text': texts, 'probabilities': probabilities} |
||||
|
else: |
||||
|
querying_list = list(redis_.smembers("querying")) |
||||
|
querying_set = set() |
||||
|
for i in querying_list: |
||||
|
querying_set.add(i.decode()) |
||||
|
|
||||
|
querying_bool = False |
||||
|
if id_ in querying_set: |
||||
|
querying_bool = True |
||||
|
|
||||
|
query_list_json = redis_.lrange(db_key_query, 0, -1) |
||||
|
query_set_ids = set() |
||||
|
for i in query_list_json: |
||||
|
data_dict = json.loads(i) |
||||
|
query_id = data_dict['id'] |
||||
|
query_set_ids.add(query_id) |
||||
|
|
||||
|
query_bool = False |
||||
|
if id_ in query_set_ids: |
||||
|
query_bool = True |
||||
|
|
||||
|
if querying_bool == True and query_bool == True: |
||||
|
result_text = {'code': "201", 'text': "", 'probabilities': None} |
||||
|
elif querying_bool == True and query_bool == False: |
||||
|
result_text = {'code': "202", 'text': "", 'probabilities': None} |
||||
|
else: |
||||
|
result_text = {'code': "203", 'text': "", 'probabilities': None} |
||||
|
load_request_path = './request_data_logs_203/{}.json'.format(id_) |
||||
|
with open(load_request_path, 'w', encoding='utf8') as f2: |
||||
|
# ensure_ascii=False才能输入中文,否则是Unicode字符 |
||||
|
# indent=2 JSON数据的缩进,美观 |
||||
|
json.dump(result_text, f2, ensure_ascii=False, indent=4) |
||||
|
|
||||
|
return flask.jsonify(result_text) # 返回结果 |
||||
|
|
||||
|
|
||||
|
if __name__ == "__main__": |
||||
|
app.run(debug=False, host='0.0.0.0', port=14003) |
@ -0,0 +1 @@ |
|||||
|
nohup python flask_predict_batch_mistral.py > myout.flask_predict_batch_mistral.logs 2>&1 & |
@ -0,0 +1 @@ |
|||||
|
nohup python redis_check_uuid_mistral.py > myout.redis_check_uuid_mistral.logs 2>&1 & |
@ -0,0 +1,122 @@ |
|||||
|
import os |
||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "3" |
||||
|
from flask import Flask, jsonify |
||||
|
from flask import request |
||||
|
from transformers import pipeline |
||||
|
import redis |
||||
|
import uuid |
||||
|
import json |
||||
|
from threading import Thread |
||||
|
from vllm import LLM, SamplingParams |
||||
|
import time |
||||
|
import threading |
||||
|
import time |
||||
|
import concurrent.futures |
||||
|
import requests |
||||
|
import socket |
||||
|
|
||||
|
def get_host_ip(): |
||||
|
""" |
||||
|
查询本机ip地址 |
||||
|
:return: ip |
||||
|
""" |
||||
|
try: |
||||
|
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) |
||||
|
s.connect(('8.8.8.8', 80)) |
||||
|
ip = s.getsockname()[0] |
||||
|
finally: |
||||
|
s.close() |
||||
|
|
||||
|
return ip |
||||
|
|
||||
|
app = Flask(__name__) |
||||
|
app.config["JSON_AS_ASCII"] = False |
||||
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50,db=11, password="zhicheng123*") |
||||
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
||||
|
|
||||
|
db_key_query = 'query' |
||||
|
db_key_query_articles_directory = 'query_articles_directory' |
||||
|
db_key_result = 'result' |
||||
|
batch_size = 32 |
||||
|
|
||||
|
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=0.9,stop="</s>", max_tokens=4096) |
||||
|
models_path = "/home/majiahui/project/models-llm/openbuddy-mistral-7b-v13.1" |
||||
|
llm = LLM(model=models_path, tokenizer_mode="slow") |
||||
|
|
||||
|
|
||||
|
def dialog_line_parse(url, text): |
||||
|
""" |
||||
|
将数据输入模型进行分析并输出结果 |
||||
|
:param url: 模型url |
||||
|
:param text: 进入模型的数据 |
||||
|
:return: 模型返回结果 |
||||
|
""" |
||||
|
|
||||
|
response = requests.post( |
||||
|
url, |
||||
|
json=text, |
||||
|
timeout=1000 |
||||
|
) |
||||
|
if response.status_code == 200: |
||||
|
return response.json() |
||||
|
else: |
||||
|
# logger.error( |
||||
|
# "【{}】 Failed to get a proper response from remote " |
||||
|
# "server. Status Code: {}. Response: {}" |
||||
|
# "".format(url, response.status_code, response.text) |
||||
|
# ) |
||||
|
print("【{}】 Failed to get a proper response from remote " |
||||
|
"server. Status Code: {}. Response: {}" |
||||
|
"".format(url, response.status_code, response.text)) |
||||
|
print(text) |
||||
|
return [] |
||||
|
|
||||
|
|
||||
|
def classify(batch_size): # 调用模型,设置最大batch_size |
||||
|
while True: |
||||
|
texts = [] |
||||
|
query_ids = [] |
||||
|
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
||||
|
time.sleep(2) |
||||
|
continue |
||||
|
for i in range(min(redis_.llen(db_key_query), batch_size)): |
||||
|
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text |
||||
|
query_ids.append(json.loads(query)['id']) |
||||
|
texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
||||
|
outputs = llm.generate(texts, sampling_params) # 调用模型 |
||||
|
|
||||
|
generated_text_list = [""] * len(texts) |
||||
|
print("outputs", outputs) |
||||
|
for i, output in enumerate(outputs): |
||||
|
index = output.request_id |
||||
|
generated_text = output.outputs[0].text |
||||
|
generated_text_list[int(index)] = generated_text |
||||
|
|
||||
|
|
||||
|
for (id_, output) in zip(query_ids, generated_text_list): |
||||
|
res = output |
||||
|
redis_.set(id_, json.dumps(res)) # 将模型结果送回队列 |
||||
|
|
||||
|
|
||||
|
@app.route("/predict", methods=["POST"]) |
||||
|
def handle_query(): |
||||
|
text = request.json["texts"] # 获取用户query中的文本 例如"I love you" |
||||
|
id_ = str(uuid.uuid1()) # 为query生成唯一标识 |
||||
|
d = {'id': id_, 'text': text} # 绑定文本和query id |
||||
|
redis_.rpush(db_key_query, json.dumps(d)) # 加入redis |
||||
|
while True: |
||||
|
result = redis_.get(id_) # 获取该query的模型结果 |
||||
|
if result is not None: |
||||
|
redis_.delete(id_) |
||||
|
result_text = {'code': "200", 'data': json.loads(result)} |
||||
|
break |
||||
|
time.sleep(1) |
||||
|
|
||||
|
return jsonify(result_text) # 返回结果 |
||||
|
|
||||
|
|
||||
|
t = Thread(target=classify, args=(batch_size,)) |
||||
|
t.start() |
||||
|
|
||||
|
if __name__ == "__main__": |
||||
|
app.run(debug=False, host='0.0.0.0', port=18001) |
Loading…
Reference in new issue