|
|
@ -17,6 +17,7 @@ redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|
|
|
|
|
|
|
db_key_query = 'query' |
|
|
|
db_key_result = 'result' |
|
|
|
batch_size = 64 |
|
|
|
|
|
|
|
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=1.1,stop="</s>", max_tokens=4096) |
|
|
|
models_path = "/home/majiahui/model-llm/openbuddy-mistral-7b-v13.1" |
|
|
@ -41,10 +42,14 @@ def classify(): # 调用模型,设置最大batch_size |
|
|
|
while True: |
|
|
|
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取 |
|
|
|
continue |
|
|
|
else: |
|
|
|
# else: |
|
|
|
# query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text |
|
|
|
# query_ids = json.loads(query)['id'] |
|
|
|
# texts = json.loads(query)['texts'] # 拼接若干text 为batch |
|
|
|
for i in range(min(redis_.llen(db_key_query), batch_size)): |
|
|
|
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text |
|
|
|
query_ids = json.loads(query)['id'] |
|
|
|
texts = json.loads(query)['texts'] # 拼接若干text 为batch |
|
|
|
query_ids.append(json.loads(query)['id']) |
|
|
|
texts.append(json.loads(query)['text']) # 拼接若干text 为batch |
|
|
|
result = mistral_vllm_models(texts) # 调用模型 |
|
|
|
print(result) |
|
|
|
redis_.set(query_ids, json.dumps(result)) # 将模型结果送回队列 |
|
|
|