Browse Source

优化代码

master
majiahui@haimaqingfan.com 8 months ago
parent
commit
7fe092e6a2
  1. 11
      flask_predict_mistral_vllm.py

11
flask_predict_mistral_vllm.py

@ -17,6 +17,7 @@ redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
db_key_query = 'query'
db_key_result = 'result'
batch_size = 64
sampling_params = SamplingParams(temperature=0.95, top_p=0.7,presence_penalty=1.1,stop="</s>", max_tokens=4096)
models_path = "/home/majiahui/model-llm/openbuddy-mistral-7b-v13.1"
@ -41,10 +42,14 @@ def classify(): # 调用模型,设置最大batch_size
while True:
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
continue
else:
# else:
# query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
# query_ids = json.loads(query)['id']
# texts = json.loads(query)['texts'] # 拼接若干text 为batch
for i in range(min(redis_.llen(db_key_query), batch_size)):
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
query_ids = json.loads(query)['id']
texts = json.loads(query)['texts'] # 拼接若干text 为batch
query_ids.append(json.loads(query)['id'])
texts.append(json.loads(query)['text']) # 拼接若干text 为batch
result = mistral_vllm_models(texts) # 调用模型
print(result)
redis_.set(query_ids, json.dumps(result)) # 将模型结果送回队列

Loading…
Cancel
Save