You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
63 lines
2.1 KiB
63 lines
2.1 KiB
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
@Time : 2022/12/20 10:35
|
|
@Author :
|
|
@FileName:
|
|
@Software:
|
|
@Describe:
|
|
"""
|
|
import os
|
|
from bs4 import BeautifulSoup
|
|
import pandas as pd
|
|
import re
|
|
# 遍历文件夹
|
|
|
|
|
|
|
|
yuanshi = "../data/11篇yy/paperyyreduce20230221120936.html"
|
|
soup_source = BeautifulSoup(open(yuanshi, encoding='utf-8'),
|
|
"html.parser")
|
|
|
|
yyshuju = "../data/11篇yy/paperyyreduce_result20230221120936"
|
|
soup_result = BeautifulSoup(open(yyshuju, encoding='utf-8'),
|
|
"html.parser")
|
|
|
|
source_sentence_list = soup_source.select('p > em')
|
|
result_sentence_list = soup_result.select('p > em')
|
|
|
|
|
|
data = []
|
|
for sentence_index in range(len(source_sentence_list)):
|
|
try:
|
|
print(source_sentence_list[sentence_index]["id"])
|
|
print(result_sentence_list[sentence_index]["id"])
|
|
print(result_sentence_list[sentence_index]["class"])
|
|
if source_sentence_list[sentence_index]["id"] == result_sentence_list[sentence_index]["id"] \
|
|
and (result_sentence_list[sentence_index]["class"] == ['similar','red']
|
|
or result_sentence_list[sentence_index]["class"] == ['similar']):
|
|
# if source_sentence_list[sentence_index]["id"] == result_sentence_list[sentence_index]["id"]:
|
|
source_text = source_sentence_list[sentence_index].string
|
|
result_text = result_sentence_list[sentence_index].string
|
|
source_text = source_text.strip("\n")
|
|
result_text = result_text.strip("\n")
|
|
if source_text != None and result_text != None:
|
|
data.append([source_text,result_text])
|
|
except:
|
|
print(sentence_index)
|
|
|
|
# print(data)
|
|
|
|
|
|
def data_clean(text):
|
|
# 清洗excel中的非法字符,都是不常见的不可显示字符,例如退格,响铃等
|
|
ILLEGAL_CHARACTERS_RE = re.compile(r'[\000-\010]|[\013-\014]|[\016-\037]')
|
|
text = ILLEGAL_CHARACTERS_RE.sub(r'', text)
|
|
return text
|
|
|
|
print(data)
|
|
df = pd.DataFrame(data,columns=["原文","yy降重"])
|
|
for col in df.columns:
|
|
df[col] = df[col].apply(lambda x: data_clean(x))
|
|
|
|
df.to_excel("../data/11篇_yy.xlsx",index=None)
|
|
|