You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
6.9 KiB
215 lines
6.9 KiB
#! -*- coding: utf-8 -*-
|
|
# bert做Seq2Seq任务,采用UNILM方案
|
|
# 介绍链接:https://kexue.fm/archives/6933
|
|
|
|
|
|
from __future__ import print_function
|
|
import glob
|
|
import numpy as np
|
|
from bert4keras.backend import keras, K
|
|
from bert4keras.layers import Loss
|
|
from bert4keras.models import build_transformer_model
|
|
from bert4keras.tokenizers import Tokenizer, load_vocab
|
|
from bert4keras.optimizers import Adam
|
|
from bert4keras.snippets import sequence_padding, open
|
|
from bert4keras.snippets import DataGenerator, AutoRegressiveDecoder
|
|
from keras.models import Model
|
|
import tensorflow as tf
|
|
from rouge import Rouge
|
|
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
|
|
|
|
|
import os
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
|
from keras.backend.tensorflow_backend import set_session
|
|
config = tf.ConfigProto()
|
|
config.gpu_options.allow_growth = True
|
|
set_session(tf.Session(config=config)) # 此处不同
|
|
|
|
|
|
# 基本参数
|
|
maxlen = 256
|
|
batch_size = 32
|
|
steps_per_epoch = 20000
|
|
epochs = 10000
|
|
|
|
# bert配置
|
|
config_path = './bert_base_script_fintune_tf/config.json'
|
|
checkpoint_path = './bert_base_script_fintune_tf/bert_base_script_fintune_tf.ckpt'
|
|
dict_path = './bert_base_script_fintune_tf/vocab.txt'
|
|
|
|
# # 训练样本。THUCNews数据集,每个样本保存为一个txt。
|
|
# txts = glob.glob('/root/thuctc/THUCNews/*/*.txt')
|
|
|
|
file = "data/train_cat_data_4.txt"
|
|
try:
|
|
with open(file, 'r', encoding="utf-8") as f:
|
|
lines = [x.strip() for x in f if x.strip() != '']
|
|
except:
|
|
with open(file, 'r', encoding="gbk") as f:
|
|
lines = [x.strip() for x in f if x.strip() != '']
|
|
|
|
|
|
|
|
# 加载并精简词表,建立分词器
|
|
token_dict, keep_tokens = load_vocab(
|
|
dict_path=dict_path,
|
|
simplified=True,
|
|
startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]'],
|
|
)
|
|
tokenizer = Tokenizer(token_dict, do_lower_case=True)
|
|
|
|
|
|
class data_generator(DataGenerator):
|
|
"""数据生成器
|
|
"""
|
|
def __iter__(self, random=False):
|
|
batch_token_ids, batch_segment_ids = [], []
|
|
for is_end, txt in self.sample(random):
|
|
text = txt.split('\t')
|
|
if len(text) == 3:
|
|
content = text[0]
|
|
content_g = text[2]
|
|
token_ids, segment_ids = tokenizer.encode(
|
|
content, content_g, maxlen=maxlen
|
|
)
|
|
batch_token_ids.append(token_ids)
|
|
batch_segment_ids.append(segment_ids)
|
|
if len(batch_token_ids) == self.batch_size or is_end:
|
|
batch_token_ids = sequence_padding(batch_token_ids)
|
|
batch_segment_ids = sequence_padding(batch_segment_ids)
|
|
yield [batch_token_ids, batch_segment_ids], None
|
|
batch_token_ids, batch_segment_ids = [], []
|
|
|
|
|
|
class CrossEntropy(Loss):
|
|
"""交叉熵作为loss,并mask掉输入部分
|
|
"""
|
|
def compute_loss(self, inputs, mask=None):
|
|
y_true, y_mask, y_pred = inputs
|
|
y_true = y_true[:, 1:] # 目标token_ids
|
|
y_mask = y_mask[:, 1:] # segment_ids,刚好指示了要预测的部分
|
|
y_pred = y_pred[:, :-1] # 预测序列,错开一位
|
|
loss = K.sparse_categorical_crossentropy(y_true, y_pred)
|
|
loss = K.sum(loss * y_mask) / K.sum(y_mask)
|
|
return loss
|
|
|
|
|
|
model = build_transformer_model(
|
|
config_path,
|
|
checkpoint_path,
|
|
application='unilm',
|
|
keep_tokens=keep_tokens, # 只保留keep_tokens中的字,精简原字表
|
|
ignore_invalid_weights=True
|
|
)
|
|
model.summary()
|
|
output = CrossEntropy(2)(model.inputs + model.outputs)
|
|
|
|
model = Model(model.inputs, output)
|
|
model.compile(optimizer=Adam(1e-5))
|
|
|
|
|
|
|
|
class AutoTitle(AutoRegressiveDecoder):
|
|
"""seq2seq解码器
|
|
"""
|
|
@AutoRegressiveDecoder.wraps(default_rtype='probas')
|
|
def predict(self, inputs, output_ids, states):
|
|
token_ids, segment_ids = inputs
|
|
token_ids = np.concatenate([token_ids, output_ids], 1)
|
|
segment_ids = np.concatenate([segment_ids, np.ones_like(output_ids)], 1)
|
|
return self.last_token(model).predict([token_ids, segment_ids])
|
|
|
|
def generate(self, text, topk=1):
|
|
max_c_len = maxlen - self.maxlen
|
|
token_ids, segment_ids = tokenizer.encode(text, maxlen=max_c_len)
|
|
output_ids = self.beam_search([token_ids, segment_ids],
|
|
topk=topk) # 基于beam search
|
|
return tokenizer.decode(output_ids)
|
|
|
|
|
|
autotitle = AutoTitle(start_id=None, end_id=tokenizer._token_end_id, maxlen=60)
|
|
|
|
|
|
def just_show():
|
|
|
|
s2 = u'尽管是有些疑惑,但大家也只敢是脸上带着笑意,慢慢地从苏溪的嘴里面套一些话出来。'
|
|
for s in [s2]:
|
|
print(u'生成标题:', autotitle.generate(s))
|
|
print()
|
|
|
|
|
|
# class Evaluator(keras.callbacks.Callback):
|
|
# """评估与保存
|
|
# """
|
|
# def __init__(self):
|
|
# self.lowest = 1e10
|
|
#
|
|
# def on_epoch_end(self, epoch, logs=None):
|
|
# # 保存最优
|
|
# if logs['loss'] <= self.lowest:
|
|
# self.lowest = logs['loss']
|
|
# model.save_weights('./output/best_model_quan_reversal.weights')
|
|
# # 演示效果
|
|
# just_show()
|
|
|
|
class Evaluator(keras.callbacks.Callback):
|
|
"""评估与保存
|
|
"""
|
|
def __init__(self):
|
|
self.rouge = Rouge()
|
|
self.smooth = SmoothingFunction().method1
|
|
self.best_bleu = 0.
|
|
|
|
def on_epoch_end(self, epoch, logs=None):
|
|
metrics = self.evaluate(valid_data) # 评测模型
|
|
if metrics['bleu'] > self.best_bleu:
|
|
self.best_bleu = metrics['bleu']
|
|
model.save_weights('./best_model.weights') # 保存模型
|
|
metrics['best_bleu'] = self.best_bleu
|
|
print('valid_data:', metrics)
|
|
|
|
def evaluate(self, data, topk=1):
|
|
total = 0
|
|
rouge_1, rouge_2, rouge_l, bleu = 0, 0, 0, 0
|
|
for title, content in tqdm(data):
|
|
total += 1
|
|
title = ' '.join(title).lower()
|
|
pred_title = ' '.join(autotitle.generate(content, topk)).lower()
|
|
if pred_title.strip():
|
|
scores = self.rouge.get_scores(hyps=pred_title, refs=title)
|
|
rouge_1 += scores[0]['rouge-1']['f']
|
|
rouge_2 += scores[0]['rouge-2']['f']
|
|
rouge_l += scores[0]['rouge-l']['f']
|
|
bleu += sentence_bleu(
|
|
references=[title.split(' ')],
|
|
hypothesis=pred_title.split(' '),
|
|
smoothing_function=self.smooth
|
|
)
|
|
rouge_1 /= total
|
|
rouge_2 /= total
|
|
rouge_l /= total
|
|
bleu /= total
|
|
return {
|
|
'rouge-1': rouge_1,
|
|
'rouge-2': rouge_2,
|
|
'rouge-l': rouge_l,
|
|
'bleu': bleu,
|
|
}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
evaluator = Evaluator()
|
|
train_generator = data_generator(lines, batch_size)
|
|
|
|
model.fit(
|
|
train_generator.forfit(),
|
|
steps_per_epoch=steps_per_epoch,
|
|
epochs=epochs,
|
|
callbacks=[evaluator]
|
|
)
|
|
|
|
else:
|
|
|
|
model.load_weights('./best_model.weights')
|
|
|