普通版降重
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

217 lines
7.2 KiB

# -*- coding: utf-8 -*-
"""
@Time : 2022/9/19 14:43
@Author :
@FileName:
@Software:
@Describe:
"""
# 训练环境:tensorflow 1.14 + keras 2.3.1 + bert4keras 0.7.7
import os
# os.environ["TF_KERAS"] = "1"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import json
import numpy as np
from collections import Counter
from bert4keras.backend import keras, K
from bert4keras.layers import Loss
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer, load_vocab
from bert4keras.optimizers import Adam, extend_with_weight_decay
from bert4keras.snippets import DataGenerator
from bert4keras.snippets import sequence_padding
from bert4keras.snippets import text_segmentate
from bert4keras.snippets import AutoRegressiveDecoder
# from bert4keras.snippets import uniout
import tensorflow as tf
from keras.backend import set_session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config)) # 此处不同
# 基本信息
maxlen = 256
batch_size = 32
steps_per_epoch = 40000
epochs = 10000
# bert配置
config_path = './chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_config.json'
checkpoint_path = './chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_model.ckpt'
dict_path = './chinese_roberta_wwm_ext_L-12_H-768_A-12/vocab_drop.txt'
file = "data/train_yy_sim.txt"
try:
with open(file, 'r', encoding="utf-8") as f:
lines = [x.strip() for x in f if x.strip() != '']
except:
with open(file, 'r', encoding="gbk") as f:
lines = [x.strip() for x in f if x.strip() != '']
# 加载并精简词表,建立分词器
token_dict, keep_tokens = load_vocab(
dict_path=dict_path,
simplified=True,
startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]'],
)
tokenizer = Tokenizer(token_dict, do_lower_case=True)
class data_generator(DataGenerator):
"""数据生成器
"""
def __iter__(self, random=False):
batch_token_ids, batch_segment_ids = [], []
for is_end, txt in self.sample(random):
text = txt.split('\t')
if len(text) == 3:
content = text[0]
content_g = text[2]
token_ids, segment_ids = tokenizer.encode(
content, content_g, maxlen=maxlen
)
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
if len(batch_token_ids) == self.batch_size or is_end:
batch_token_ids = sequence_padding(batch_token_ids)
batch_segment_ids = sequence_padding(batch_segment_ids)
yield [batch_token_ids, batch_segment_ids], None
batch_token_ids, batch_segment_ids = [], []
class TotalLoss(Loss):
"""loss分两部分,一是seq2seq的交叉熵,二是相似度的交叉熵。
"""
def compute_loss(self, inputs, mask=None):
loss1 = self.compute_loss_of_seq2seq(inputs, mask)
loss2 = self.compute_loss_of_similarity(inputs, mask)
self.add_metric(loss1, name='seq2seq_loss')
self.add_metric(loss2, name='similarity_loss')
return loss1 + loss2
def compute_loss_of_seq2seq(self, inputs, mask=None):
y_true, y_mask, _, y_pred = inputs
y_true = y_true[:, 1:] # 目标token_ids
y_mask = y_mask[:, 1:] # segment_ids,刚好指示了要预测的部分
y_pred = y_pred[:, :-1] # 预测序列,错开一位
loss = K.sparse_categorical_crossentropy(y_true, y_pred)
loss = K.sum(loss * y_mask) / K.sum(y_mask)
return loss
def compute_loss_of_similarity(self, inputs, mask=None):
_, _, y_pred, _ = inputs
y_true = self.get_labels_of_similarity(y_pred) # 构建标签
y_pred = K.l2_normalize(y_pred, axis=1) # 句向量归一化
similarities = K.dot(y_pred, K.transpose(y_pred)) # 相似度矩阵
similarities = similarities - K.eye(K.shape(y_pred)[0]) * 1e12 # 排除对角线
similarities = similarities * 30 # scale
loss = K.categorical_crossentropy(
y_true, similarities, from_logits=True
)
return loss
def get_labels_of_similarity(self, y_pred):
idxs = K.arange(0, K.shape(y_pred)[0])
idxs_1 = idxs[None, :]
idxs_2 = (idxs + 1 - idxs % 2 * 2)[:, None]
labels = K.equal(idxs_1, idxs_2)
labels = K.cast(labels, K.floatx())
return labels
# 建立加载模型
bert = build_transformer_model(
config_path,
checkpoint_path,
with_pool='linear',
application='unilm',
keep_tokens=keep_tokens, # 只保留keep_tokens中的字,精简原字表
return_keras_model=False,
ignore_invalid_weights=True
)
encoder = keras.models.Model(bert.model.inputs, bert.model.outputs[0])
seq2seq = keras.models.Model(bert.model.inputs, bert.model.outputs[1])
outputs = TotalLoss([2, 3])(bert.model.inputs + bert.model.outputs)
model = keras.models.Model(bert.model.inputs, outputs)
AdamW = extend_with_weight_decay(Adam, 'AdamW')
optimizer = AdamW(learning_rate=2e-6, weight_decay_rate=0.01)
model.compile(optimizer=optimizer)
model.summary()
class AutoTitle(AutoRegressiveDecoder):
"""seq2seq解码器
"""
@AutoRegressiveDecoder.wraps(default_rtype='probas')
def predict(self, inputs, output_ids, states):
token_ids, segment_ids = inputs
token_ids = np.concatenate([token_ids, output_ids], 1)
segment_ids = np.concatenate([segment_ids, np.ones_like(output_ids)], 1)
return self.last_token(model).predict([token_ids, segment_ids])
def generate(self, text, n=1, topk=5):
token_ids, segment_ids = tokenizer.encode(text, maxlen= maxlen)
output_ids = self.random_sample([token_ids, segment_ids], n,
topk) # 基于随机采样
return [tokenizer.decode(ids) for ids in output_ids]
def generate_(self, text, topk=1):
max_c_len = maxlen - self.maxlen
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
output_ids = self.beam_search([token_ids, segment_ids],
topk=topk) # 基于beam search
return tokenizer.decode(output_ids)
autotitle = AutoTitle(start_id=None, end_id=tokenizer._token_end_id, maxlen=120)
def just_show():
s2 = u'尽管是有些疑惑,但大家也只敢是脸上带着笑意,慢慢地从苏溪的嘴里面套一些话出来。'
for s in [s2]:
print(u'生成:', autotitle.generate(s))
print()
class Evaluate(keras.callbacks.Callback):
"""评估模型
"""
def __init__(self):
self.lowest = 1e10
def on_epoch_end(self, epoch, logs=None):
model.save_weights('./output_simbert_yy/latest_simbertmodel_datasim_yinhao.weights')
# 保存最优
if logs['loss'] <= self.lowest:
self.lowest = logs['loss']
model.save_weights('./output_simbert_yy/best_simbertmodel_datasim_yinhao.weights')
# 演示效果
# just_show()
if __name__ == '__main__':
train_generator = data_generator(lines, batch_size)
evaluator = Evaluate()
model.fit_generator(
train_generator.forfit(),
steps_per_epoch=steps_per_epoch,
epochs=epochs,
callbacks=[evaluator]
)
# else:
#
# model.load_weights('./latest_model.weights')