普通版降重
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

343 lines
11 KiB

import os
from config.predict_t5_config import DropT5Config
config = DropT5Config()
os.environ["CUDA_VISIBLE_DEVICES"] = config.cuda_id
from flask import Flask, jsonify
from flask import request
# from linshi import autotitle
import requests
from predict_t5 import GenerateModel, AutoTitle
import redis
import uuid
import json
from threading import Thread
import time
import re
import logging
logging.basicConfig(level=logging.DEBUG, # 控制台打印的日志级别
filename='rewrite.log',
filemode='a', ##模式,有w和a,w就是写模式,每次都会重新写日志,覆盖之前的日志
# a是追加模式,默认如果不写的话,就是追加模式
format=
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
# 日志格式
)
pool = redis.ConnectionPool(host='localhost', port=6379, max_connections=100, db=1)
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
db_key_query = 'query'
db_key_querying = 'querying'
db_key_queryset = 'queryset'
batch_size = 32
app = Flask(__name__)
app.config["JSON_AS_ASCII"] = False
import logging
pattern = r"[。]"
RE_DIALOG = re.compile(r"\".*?\"|\'.*?\'|“.*?”")
fuhao_end_sentence = ["", "", "", "", ""]
generatemodel = GenerateModel(config.config_path,
config.checkpoint_path,
config.spm_path,
config.keep_tokens_path,
config.maxlen,
config.savemodel_path)
encoder, decoder, model, tokenizer = generatemodel.device_setup()
autotitle = AutoTitle(encoder, decoder, model, tokenizer, start_id=0, end_id=tokenizer._token_end_id, maxlen=120)
class log:
def __init__(self):
pass
def log(*args, **kwargs):
format = '%Y/%m/%d-%H:%M:%S'
format_h = '%Y-%m-%d'
value = time.localtime(int(time.time()))
dt = time.strftime(format, value)
dt_log_file = time.strftime(format_h, value)
log_file = 'log_file/access-%s' % dt_log_file + ".log"
if not os.path.exists(log_file):
with open(os.path.join(log_file), 'w', encoding='utf-8') as f:
print(dt, *args, file=f, **kwargs)
else:
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f:
print(dt, *args, file=f, **kwargs)
def get_dialogs_index(line: str):
"""
获取对话及其索引
:param line 文本
:return dialogs 对话内容
dialogs_index: 对话位置索引
other_index: 其他内容位置索引
"""
dialogs = re.finditer(RE_DIALOG, line)
dialogs_text = re.findall(RE_DIALOG, line)
dialogs_index = []
for dialog in dialogs:
all_ = [i for i in range(dialog.start(), dialog.end())]
dialogs_index.extend(all_)
other_index = [i for i in range(len(line)) if i not in dialogs_index]
return dialogs_text, dialogs_index, other_index
def chulichangju_1(text, snetence_id, chulipangban_return_list, short_num):
fuhao = ["", "", "", ""]
dialogs_text, dialogs_index, other_index = get_dialogs_index(text)
text_1 = text[:120]
text_2 = text[120:]
text_1_new = ""
if text_2 == "":
chulipangban_return_list.append([text_1, snetence_id, short_num])
return chulipangban_return_list
for i in range(len(text_1) - 1, -1, -1):
if text_1[i] in fuhao:
if i in dialogs_index:
continue
text_1_new = text_1[:i]
text_1_new += text_1[i]
chulipangban_return_list.append([text_1_new, snetence_id, short_num])
if text_2 != "":
if i + 1 != 120:
text_2 = text_1[i + 1:] + text_2
break
# else:
# chulipangban_return_list.append(text_1)
if text_1_new == "":
chulipangban_return_list.append([text_1, snetence_id, short_num])
if text_2 != "":
short_num += 1
chulipangban_return_list = chulichangju_1(text_2, snetence_id, chulipangban_return_list, short_num)
return chulipangban_return_list
def chulipangban_test_1(snetence_id, text):
# 引号处理
dialogs_text, dialogs_index, other_index = get_dialogs_index(text)
for dialogs_text_dan in dialogs_text:
text_dan_list = text.split(dialogs_text_dan)
if "" in dialogs_text_dan:
dialogs_text_dan = str(dialogs_text_dan).replace("", "&")
text = dialogs_text_dan.join(text_dan_list)
# text_new_str = "".join(text_new)
sentence_list = text.split("")
# sentence_list_new = []
# for i in sentence_list:
# if i != "":
# sentence_list_new.append(i)
# sentence_list = sentence_list_new
sentence_batch_list = []
sentence_batch_one = []
sentence_batch_length = 0
return_list = []
for sentence in sentence_list:
if len(sentence) < 120:
sentence_batch_length += len(sentence)
sentence_batch_list.append([sentence, snetence_id, 0])
# sentence_pre = autotitle.gen_synonyms_short(sentence)
# return_list.append(sentence_pre)
else:
sentence_split_list = chulichangju_1(sentence, snetence_id, [], 0)
for sentence_short in sentence_split_list:
sentence_batch_list.append(sentence_short)
return sentence_batch_list
def paragraph_test(texts: dict):
text_new = []
for i, text in texts.items():
text_list = chulipangban_test_1(i, text)
text_new.extend(text_list)
# text_new_str = "".join(text_new)
return text_new
def batch_data_process(text_list):
sentence_batch_length = 0
sentence_batch_one = []
sentence_batch_list = []
for sentence in text_list:
sentence_batch_length += len(sentence[0])
sentence_batch_one.append(sentence)
if sentence_batch_length > 500:
sentence_batch_length = 0
sentence_ = sentence_batch_one.pop(-1)
sentence_batch_list.append(sentence_batch_one)
sentence_batch_one = []
sentence_batch_one.append(sentence_)
sentence_batch_list.append(sentence_batch_one)
return sentence_batch_list
def batch_predict(batch_data_list):
'''
一个bacth数据预测
@param data_text:
@return:
'''
batch_data_list_new = []
batch_data_text_list = []
batch_data_snetence_id_list = []
for i in batch_data_list:
batch_data_text_list.append(i[0])
batch_data_snetence_id_list.append(i[1:])
# batch_pre_data_list = autotitle.generate_beam_search_batch(batch_data_text_list)
batch_pre_data_list = batch_data_text_list
for text, sentence_id in zip(batch_pre_data_list, batch_data_snetence_id_list):
batch_data_list_new.append([text] + sentence_id)
return batch_data_list_new
def one_predict(data_text):
'''
一个条数据预测
@param data_text:
@return:
'''
if data_text[0] != "":
data_inputs = data_text[0].replace("&", "")
pre_data = autotitle.generate(data_inputs)
else:
pre_data = ""
data_new = [pre_data] + data_text[1:]
return data_new
def predict_data_post_processing(text_list):
text_list_sentence = []
# text_list_sentence.append([text_list[0][0], text_list[0][1]])
for i in range(len(text_list)):
if text_list[i][2] != 0:
text_list_sentence[-1][0] += text_list[i][0]
else:
text_list_sentence.append([text_list[i][0], text_list[i][1]])
return_list = {}
sentence_one = []
sentence_id = text_list_sentence[0][1]
for i in text_list_sentence:
if i[1] == sentence_id:
sentence_one.append(i[0])
else:
return_list[sentence_id] = "".join(sentence_one)
sentence_id = i[1]
sentence_one = []
sentence_one.append(i[0])
if sentence_one != []:
return_list[sentence_id] = "".join(sentence_one)
return return_list
# def main(text:list):
# # text_list = paragraph_test(text)
# # batch_data = batch_data_process(text_list)
# # text_list = []
# # for i in batch_data:
# # text_list.extend(i)
# # return_list = predict_data_post_processing(text_list)
# # return return_list
def main(text: dict):
text_list = paragraph_test(text)
text_list_new = []
for i in text_list:
pre = one_predict(i)
text_list_new.append(pre)
return_list = predict_data_post_processing(text_list_new)
return return_list
@app.route('/droprepeat/', methods=['POST'])
def sentence():
print(request.remote_addr)
texts = request.json["texts"]
text_type = request.json["text_type"]
print("原始语句" + str(texts))
# question = question.strip('。、!??')
if isinstance(texts, dict):
texts_list = []
y_pred_label_list = []
position_list = []
# texts = texts.replace('\'', '\"')
if texts is None:
return_text = {"texts": "输入了空值", "probabilities": None, "status_code": False}
return jsonify(return_text)
else:
assert text_type in ['focus', 'chapter']
if text_type == 'focus':
texts_list = main(texts)
if text_type == 'chapter':
texts_list = main(texts)
return_text = {"texts": texts_list, "probabilities": None, "status_code": True}
else:
return_text = {"texts": "输入格式应该为list", "probabilities": None, "status_code": False}
return jsonify(return_text)
def classify(): # 调用模型,设置最大batch_size
while True:
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
time.sleep(3)
continue
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
data_dict_path = json.loads(query)
path = data_dict_path['path']
# text_type = data_dict["text_type"]
with open(path, encoding='utf8') as f1:
# 加载文件的对象
data_dict = json.load(f1)
query_id = data_dict['id']
texts = data_dict["text"]
text_type = data_dict["text_type"]
assert text_type in ['focus', 'chapter']
if text_type == 'focus':
texts_list = main(texts)
elif text_type == 'chapter':
texts_list = main(texts)
else:
texts_list = []
return_text = {"texts": texts_list, "probabilities": None, "status_code": 200}
load_result_path = "./new_data_logs/{}.json".format(query_id)
print("query_id: ", query_id)
print("load_result_path: ", load_result_path)
with open(load_result_path, 'w', encoding='utf8') as f2:
# ensure_ascii=False才能输入中文,否则是Unicode字符
# indent=2 JSON数据的缩进,美观
json.dump(return_text, f2, ensure_ascii=False, indent=4)
debug_id_1 = 1
redis_.set(query_id, load_result_path, 86400)
debug_id_2 = 2
redis_.srem(db_key_querying, query_id)
debug_id_3 = 3
log.log('start at',
'query_id:{},load_result_path:{},return_text:{}, debug_id_1:{}, debug_id_2:{}, debug_id_3:{}'.format(
query_id, load_result_path, return_text, debug_id_1, debug_id_2, debug_id_3))
if __name__ == '__main__':
classify()