普通版降重
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

76 lines
2.2 KiB

# -*- coding: utf-8 -*-
"""
@Time : 2023/3/2 19:31
@Author :
@FileName:
@Software:
@Describe:
"""
#
# import redis
#
# redis_pool = redis.ConnectionPool(host='127.0.0.1', port=6379, password='', db=0)
# redis_conn = redis.Redis(connection_pool=redis_pool)
#
#
# name_dict = {
# 'name_4' : 'Zarten_4',
# 'name_5' : 'Zarten_5'
# }
# redis_conn.mset(name_dict)
import flask
import redis
import uuid
import json
from threading import Thread
import time
app = flask.Flask(__name__)
pool = redis.ConnectionPool(host='localhost', port=6379, max_connections=50)
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
db_key_query = 'query'
db_key_result = 'result'
batch_size = 32
def classify(): # 调用模型,设置最大batch_size
while True:
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
continue
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
data_dict = json.loads(query)
query_id = data_dict['id']
text = data_dict['text'] # 拼接若干text 为batch
result = text + "1111111" # 调用模型
time.sleep(5)
# for (id_, res) in zip(query_ids, result):
# res['score'] = str(res['score'])
# redis_.set(id_, json.dumps(res)) # 将模型结果送回队列
# d = {"id": query_id, "text": result}
redis_.set(query_id, json.dumps(result)) # 加入redis
@app.route("/predict", methods=["POST"])
def handle_query():
text = flask.request.json['text'] # 获取用户query中的文本 例如"I love you"
id_ = str(uuid.uuid1()) # 为query生成唯一标识
print(id_)
d = {'id': id_, 'text': text} # 绑定文本和query id
redis_.rpush(db_key_query, json.dumps(d)) # 加入redis
# while True:
# result = redis_.get(id_) # 获取该query的模型结果
# if result is not None:
# redis_.delete(id_)
# result_text = {'code': "200", 'data': result.decode('UTF-8')}
# break
result_text = {'id': id_, 'text': text}
return flask.jsonify(result_text) # 返回结果
if __name__ == "__main__":
t = Thread(target=classify)
t.start()
app.run(debug=False, host='127.0.0.1', port=9000)