You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
277 lines
8.6 KiB
277 lines
8.6 KiB
import os
|
|
# os.environ["TF_KERAS"] = "1"
|
|
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
|
from flask import Flask, jsonify
|
|
from flask import request
|
|
# from linshi import autotitle
|
|
import requests
|
|
from flask import request
|
|
from predict_batch import autotitle
|
|
|
|
|
|
import re
|
|
app = Flask(__name__)
|
|
app.config["JSON_AS_ASCII"] = False
|
|
|
|
import logging
|
|
pattern = r"[。]"
|
|
RE_DIALOG = re.compile(r"\".*?\"|\'.*?\'|“.*?”")
|
|
fuhao_end_sentence = ["。",",","?","!","…"]
|
|
|
|
config = {
|
|
"batch_szie": 1000
|
|
}
|
|
|
|
|
|
def get_dialogs_index(line: str):
|
|
"""
|
|
获取对话及其索引
|
|
:param line 文本
|
|
:return dialogs 对话内容
|
|
dialogs_index: 对话位置索引
|
|
other_index: 其他内容位置索引
|
|
"""
|
|
dialogs = re.finditer(RE_DIALOG, line)
|
|
dialogs_text = re.findall(RE_DIALOG, line)
|
|
dialogs_index = []
|
|
for dialog in dialogs:
|
|
all_ = [i for i in range(dialog.start(), dialog.end())]
|
|
dialogs_index.extend(all_)
|
|
other_index = [i for i in range(len(line)) if i not in dialogs_index]
|
|
|
|
return dialogs_text, dialogs_index, other_index
|
|
|
|
|
|
def chulichangju_1(text, snetence_id, chulipangban_return_list, short_num):
|
|
fuhao = [",","?","!","…"]
|
|
text_1 = text[:120]
|
|
text_2 = text[120:]
|
|
text_1_new = ""
|
|
for i in range(len(text_1)-1, -1, -1):
|
|
if text_1[i] in fuhao:
|
|
text_1_new = text_1[:i]
|
|
text_1_new += text_1[i]
|
|
chulipangban_return_list.append([text_1_new, snetence_id, short_num])
|
|
if text_2 != "":
|
|
if i+1 != 120:
|
|
text_2 = text_1[i+1:] + text_2
|
|
break
|
|
# else:
|
|
# chulipangban_return_list.append(text_1)
|
|
if text_1_new == "":
|
|
chulipangban_return_list.append([text_1, snetence_id, short_num])
|
|
if text_2 != "":
|
|
short_num += 1
|
|
chulipangban_return_list = chulichangju_1(text_2, snetence_id, chulipangban_return_list, short_num)
|
|
return chulipangban_return_list
|
|
|
|
|
|
def chulipangban_test_1(text, snetence_id):
|
|
sentence_list = text.split("。")
|
|
# sentence_list_new = []
|
|
# for i in sentence_list:
|
|
# if i != "":
|
|
# sentence_list_new.append(i)
|
|
# sentence_list = sentence_list_new
|
|
sentence_batch_list = []
|
|
sentence_batch_one = []
|
|
sentence_batch_length = 0
|
|
return_list = []
|
|
for sentence in sentence_list:
|
|
if len(sentence) < 120:
|
|
sentence_batch_length += len(sentence)
|
|
sentence_batch_list.append([sentence, snetence_id, 0])
|
|
# sentence_pre = autotitle.gen_synonyms_short(sentence)
|
|
# return_list.append(sentence_pre)
|
|
else:
|
|
sentence_split_list = chulichangju_1(sentence, snetence_id, [], 0)
|
|
for sentence_short in sentence_split_list:
|
|
sentence_batch_list.append(sentence_short)
|
|
return sentence_batch_list
|
|
|
|
|
|
def paragraph_test_(text:list, text_new:list):
|
|
|
|
for i in range(len(text)):
|
|
text = chulipangban_test_1(text, i)
|
|
text = "。".join(text)
|
|
text_new.append(text)
|
|
|
|
# text_new_str = "".join(text_new)
|
|
return text_new
|
|
|
|
def paragraph_test(text:list):
|
|
|
|
text_new = []
|
|
for i in range(len(text)):
|
|
text_list = chulipangban_test_1(text[i], i)
|
|
text_new.extend(text_list)
|
|
|
|
# text_new_str = "".join(text_new)
|
|
return text_new
|
|
|
|
|
|
def batch_data_process(text_list):
|
|
sentence_batch_length = 0
|
|
sentence_batch_one = []
|
|
sentence_batch_list = []
|
|
|
|
for sentence in text_list:
|
|
sentence_batch_length += len(sentence[0])
|
|
sentence_batch_one.append(sentence)
|
|
if sentence_batch_length > 500:
|
|
sentence_batch_length = 0
|
|
sentence_ = sentence_batch_one.pop(-1)
|
|
sentence_batch_list.append(sentence_batch_one)
|
|
sentence_batch_one = []
|
|
sentence_batch_one.append(sentence_)
|
|
sentence_batch_list.append(sentence_batch_one)
|
|
return sentence_batch_list
|
|
|
|
def batch_predict(batch_data_list):
|
|
'''
|
|
一个bacth数据预测
|
|
@param data_text:
|
|
@return:
|
|
'''
|
|
batch_data_list_new = []
|
|
batch_data_text_list = []
|
|
batch_data_snetence_id_list = []
|
|
for i in batch_data_list:
|
|
batch_data_text_list.append(i[0])
|
|
batch_data_snetence_id_list.append(i[1:])
|
|
# batch_pre_data_list = autotitle.generate_beam_search_batch(batch_data_text_list)
|
|
batch_pre_data_list = batch_data_text_list
|
|
for text,sentence_id in zip(batch_pre_data_list,batch_data_snetence_id_list):
|
|
batch_data_list_new.append([text] + sentence_id)
|
|
|
|
return batch_data_list_new
|
|
|
|
|
|
def one_predict(data_text):
|
|
'''
|
|
一个条数据预测
|
|
@param data_text:
|
|
@return:
|
|
'''
|
|
if data_text[0] != "":
|
|
pre_data = autotitle.generate(data_text[0])
|
|
else:
|
|
pre_data = ""
|
|
data_new = [pre_data] + data_text[1:]
|
|
return data_new
|
|
|
|
|
|
def predict_data_post_processing(text_list):
|
|
text_list_sentence = []
|
|
# text_list_sentence.append([text_list[0][0], text_list[0][1]])
|
|
for i in range(len(text_list)):
|
|
if text_list[i][2] != 0:
|
|
text_list_sentence[-1][0] += text_list[i][0]
|
|
else:
|
|
text_list_sentence.append([text_list[i][0], text_list[i][1]])
|
|
|
|
return_list = []
|
|
sentence_one = []
|
|
sentence_id = 0
|
|
for i in text_list_sentence:
|
|
if i[1] == sentence_id:
|
|
sentence_one.append(i[0])
|
|
else:
|
|
sentence_id = i[1]
|
|
return_list.append("。".join(sentence_one))
|
|
sentence_one = []
|
|
sentence_one.append(i[0])
|
|
if sentence_one != []:
|
|
return_list.append("。".join(sentence_one))
|
|
return return_list
|
|
|
|
|
|
# def main(text:list):
|
|
# # text_list = paragraph_test(text)
|
|
# # batch_data = batch_data_process(text_list)
|
|
# # text_list = []
|
|
# # for i in batch_data:
|
|
# # text_list.extend(i)
|
|
# # return_list = predict_data_post_processing(text_list)
|
|
# # return return_list
|
|
|
|
def main(text: list):
|
|
text_list = paragraph_test(text)
|
|
text_list_new = []
|
|
for i in text_list:
|
|
pre = one_predict(i)
|
|
text_list_new.append(pre)
|
|
return_list = predict_data_post_processing(text_list_new)
|
|
return return_list
|
|
|
|
@app.route('/droprepeat/', methods=['POST'])
|
|
def sentence():
|
|
print(request.remote_addr)
|
|
texts = request.json["texts"]
|
|
text_type = request.json["text_type"]
|
|
print("原始语句" + str(texts))
|
|
# question = question.strip('。、!??')
|
|
|
|
|
|
if isinstance(texts, list):
|
|
texts_list = []
|
|
y_pred_label_list = []
|
|
position_list = []
|
|
|
|
# texts = texts.replace('\'', '\"')
|
|
if texts is None:
|
|
return_text = {"texts": "输入了空值", "probabilities": None, "status_code": False}
|
|
return jsonify(return_text)
|
|
else:
|
|
assert text_type in ['focus', 'chapter']
|
|
if text_type == 'focus':
|
|
texts_list = main(texts)
|
|
if text_type == 'chapter':
|
|
texts_list = main(texts)
|
|
|
|
return_text = {"texts": texts_list, "probabilities": None, "status_code": True}
|
|
else:
|
|
return_text = {"texts":"输入格式应该为list", "probabilities": None, "status_code":False}
|
|
return jsonify(return_text)
|
|
|
|
|
|
# @app.route('/chapter/', methods=['POST'])
|
|
# def chapter():
|
|
# texts = request.json["texts"]
|
|
#
|
|
# print("原始语句" + str(texts))
|
|
# # question = question.strip('。、!??')
|
|
#
|
|
# if isinstance(texts, str):
|
|
# texts_list = []
|
|
# y_pred_label_list = []
|
|
# position_list = []
|
|
#
|
|
# # texts = texts.replace('\'', '\"')
|
|
# if texts is None:
|
|
# return_text = {"texts": "输入了空值", "probabilities": None, "status_code": False}
|
|
# return jsonify(return_text)
|
|
# else:
|
|
# texts = texts.split("\n")
|
|
# for text in texts:
|
|
# text = text.strip()
|
|
# return_str = autotitle.generate_random_shortest(text)
|
|
# texts_list.append(return_str)
|
|
# texts_str = "\n".join(texts_list)
|
|
# return_text = {"texts": texts_str, "probabilities": None, "status_code": True}
|
|
# else:
|
|
# return_text = {"texts": "输入格式应该为str", "probabilities": None, "status_code": False}
|
|
# return jsonify(return_text)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fh = logging.FileHandler(mode='a', encoding='utf-8', filename='chitchat.log')
|
|
logging.basicConfig(
|
|
handlers=[fh],
|
|
level=logging.DEBUG,
|
|
format='%(asctime)s - %(levelname)s - %(message)s',
|
|
datefmt='%a, %d %b %Y %H:%M:%S',
|
|
)
|
|
app.run(host="0.0.0.0", port=14000, threaded=True, debug=False)
|
|
|