普通版降重
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

277 lines
8.6 KiB

import os
# os.environ["TF_KERAS"] = "1"
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from flask import Flask, jsonify
from flask import request
# from linshi import autotitle
import requests
from flask import request
from predict_batch import autotitle
import re
app = Flask(__name__)
app.config["JSON_AS_ASCII"] = False
import logging
pattern = r"[。]"
RE_DIALOG = re.compile(r"\".*?\"|\'.*?\'|“.*?”")
fuhao_end_sentence = ["","","","",""]
config = {
"batch_szie": 1000
}
def get_dialogs_index(line: str):
"""
获取对话及其索引
:param line 文本
:return dialogs 对话内容
dialogs_index: 对话位置索引
other_index: 其他内容位置索引
"""
dialogs = re.finditer(RE_DIALOG, line)
dialogs_text = re.findall(RE_DIALOG, line)
dialogs_index = []
for dialog in dialogs:
all_ = [i for i in range(dialog.start(), dialog.end())]
dialogs_index.extend(all_)
other_index = [i for i in range(len(line)) if i not in dialogs_index]
return dialogs_text, dialogs_index, other_index
def chulichangju_1(text, snetence_id, chulipangban_return_list, short_num):
fuhao = ["","","",""]
text_1 = text[:120]
text_2 = text[120:]
text_1_new = ""
for i in range(len(text_1)-1, -1, -1):
if text_1[i] in fuhao:
text_1_new = text_1[:i]
text_1_new += text_1[i]
chulipangban_return_list.append([text_1_new, snetence_id, short_num])
if text_2 != "":
if i+1 != 120:
text_2 = text_1[i+1:] + text_2
break
# else:
# chulipangban_return_list.append(text_1)
if text_1_new == "":
chulipangban_return_list.append([text_1, snetence_id, short_num])
if text_2 != "":
short_num += 1
chulipangban_return_list = chulichangju_1(text_2, snetence_id, chulipangban_return_list, short_num)
return chulipangban_return_list
def chulipangban_test_1(text, snetence_id):
sentence_list = text.split("")
# sentence_list_new = []
# for i in sentence_list:
# if i != "":
# sentence_list_new.append(i)
# sentence_list = sentence_list_new
sentence_batch_list = []
sentence_batch_one = []
sentence_batch_length = 0
return_list = []
for sentence in sentence_list:
if len(sentence) < 120:
sentence_batch_length += len(sentence)
sentence_batch_list.append([sentence, snetence_id, 0])
# sentence_pre = autotitle.gen_synonyms_short(sentence)
# return_list.append(sentence_pre)
else:
sentence_split_list = chulichangju_1(sentence, snetence_id, [], 0)
for sentence_short in sentence_split_list:
sentence_batch_list.append(sentence_short)
return sentence_batch_list
def paragraph_test_(text:list, text_new:list):
for i in range(len(text)):
text = chulipangban_test_1(text, i)
text = "".join(text)
text_new.append(text)
# text_new_str = "".join(text_new)
return text_new
def paragraph_test(text:list):
text_new = []
for i in range(len(text)):
text_list = chulipangban_test_1(text[i], i)
text_new.extend(text_list)
# text_new_str = "".join(text_new)
return text_new
def batch_data_process(text_list):
sentence_batch_length = 0
sentence_batch_one = []
sentence_batch_list = []
for sentence in text_list:
sentence_batch_length += len(sentence[0])
sentence_batch_one.append(sentence)
if sentence_batch_length > 500:
sentence_batch_length = 0
sentence_ = sentence_batch_one.pop(-1)
sentence_batch_list.append(sentence_batch_one)
sentence_batch_one = []
sentence_batch_one.append(sentence_)
sentence_batch_list.append(sentence_batch_one)
return sentence_batch_list
def batch_predict(batch_data_list):
'''
一个bacth数据预测
@param data_text:
@return:
'''
batch_data_list_new = []
batch_data_text_list = []
batch_data_snetence_id_list = []
for i in batch_data_list:
batch_data_text_list.append(i[0])
batch_data_snetence_id_list.append(i[1:])
# batch_pre_data_list = autotitle.generate_beam_search_batch(batch_data_text_list)
batch_pre_data_list = batch_data_text_list
for text,sentence_id in zip(batch_pre_data_list,batch_data_snetence_id_list):
batch_data_list_new.append([text] + sentence_id)
return batch_data_list_new
def one_predict(data_text):
'''
一个条数据预测
@param data_text:
@return:
'''
if data_text[0] != "":
pre_data = autotitle.generate(data_text[0])
else:
pre_data = ""
data_new = [pre_data] + data_text[1:]
return data_new
def predict_data_post_processing(text_list):
text_list_sentence = []
# text_list_sentence.append([text_list[0][0], text_list[0][1]])
for i in range(len(text_list)):
if text_list[i][2] != 0:
text_list_sentence[-1][0] += text_list[i][0]
else:
text_list_sentence.append([text_list[i][0], text_list[i][1]])
return_list = []
sentence_one = []
sentence_id = 0
for i in text_list_sentence:
if i[1] == sentence_id:
sentence_one.append(i[0])
else:
sentence_id = i[1]
return_list.append("".join(sentence_one))
sentence_one = []
sentence_one.append(i[0])
if sentence_one != []:
return_list.append("".join(sentence_one))
return return_list
# def main(text:list):
# # text_list = paragraph_test(text)
# # batch_data = batch_data_process(text_list)
# # text_list = []
# # for i in batch_data:
# # text_list.extend(i)
# # return_list = predict_data_post_processing(text_list)
# # return return_list
def main(text: list):
text_list = paragraph_test(text)
text_list_new = []
for i in text_list:
pre = one_predict(i)
text_list_new.append(pre)
return_list = predict_data_post_processing(text_list_new)
return return_list
@app.route('/droprepeat/', methods=['POST'])
def sentence():
print(request.remote_addr)
texts = request.json["texts"]
text_type = request.json["text_type"]
print("原始语句" + str(texts))
# question = question.strip('。、!??')
if isinstance(texts, list):
texts_list = []
y_pred_label_list = []
position_list = []
# texts = texts.replace('\'', '\"')
if texts is None:
return_text = {"texts": "输入了空值", "probabilities": None, "status_code": False}
return jsonify(return_text)
else:
assert text_type in ['focus', 'chapter']
if text_type == 'focus':
texts_list = main(texts)
if text_type == 'chapter':
texts_list = main(texts)
return_text = {"texts": texts_list, "probabilities": None, "status_code": True}
else:
return_text = {"texts":"输入格式应该为list", "probabilities": None, "status_code":False}
return jsonify(return_text)
# @app.route('/chapter/', methods=['POST'])
# def chapter():
# texts = request.json["texts"]
#
# print("原始语句" + str(texts))
# # question = question.strip('。、!??')
#
# if isinstance(texts, str):
# texts_list = []
# y_pred_label_list = []
# position_list = []
#
# # texts = texts.replace('\'', '\"')
# if texts is None:
# return_text = {"texts": "输入了空值", "probabilities": None, "status_code": False}
# return jsonify(return_text)
# else:
# texts = texts.split("\n")
# for text in texts:
# text = text.strip()
# return_str = autotitle.generate_random_shortest(text)
# texts_list.append(return_str)
# texts_str = "\n".join(texts_list)
# return_text = {"texts": texts_str, "probabilities": None, "status_code": True}
# else:
# return_text = {"texts": "输入格式应该为str", "probabilities": None, "status_code": False}
# return jsonify(return_text)
if __name__ == "__main__":
fh = logging.FileHandler(mode='a', encoding='utf-8', filename='chitchat.log')
logging.basicConfig(
handlers=[fh],
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
)
app.run(host="0.0.0.0", port=14000, threaded=True, debug=False)