普通版降重
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

70 lines
1.8 KiB

# -*- coding: utf-8 -*-
"""
@Time : 2023/2/3 17:27
@Author :
@FileName:
@Software:
@Describe:
"""
import os
# os.environ["TF_KERAS"] = "1"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from bert4keras.backend import keras, set_gelu
import numpy as np
from rouge import Rouge # pip install rouge
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
class Evaluator(keras.callbacks.Callback):
"""评估与保存
"""
def __init__(self):
self.rouge = Rouge()
self.smooth = SmoothingFunction().method1
self.best_bleu = 0.
# def on_epoch_end(self, epoch, logs=None):
# metrics = self.evaluate(valid_data) # 评测模型
# if metrics['bleu'] > self.best_bleu:
# self.best_bleu = metrics['bleu']
# model.save_weights('./best_model.weights') # 保存模型
# metrics['best_bleu'] = self.best_bleu
# print('valid_data:', metrics)
def evaluate_t(self, data_1, data_2, topk=1):
total = 0
rouge_1, rouge_2, rouge_l, bleu = 0, 0, 0, 0
scores = self.rouge.get_scores(hyps=[data_1], refs=[data_2])
rouge_1 += scores[0]['rouge-1']['f']
rouge_2 += scores[0]['rouge-2']['f']
rouge_l += scores[0]['rouge-l']['f']
bleu += sentence_bleu(
references=[data_1.split(' ')],
hypothesis=data_2.split(' '),
smoothing_function=self.smooth
)
# rouge_1 /= total
# rouge_2 /= total
# rouge_l /= total
# bleu /= total
return [rouge_1, rouge_2, rouge_l, bleu]
eval_class = Evaluator()
data_1 = "上海中心大厦"
data_2 = "上海"
eval_list = eval_class.evaluate_t(' '.join(data_1), ' '.join(data_2))
print(eval_list)
a = len(data_2) - len(data_1)
if a < 0:
a *
a = len(data_2)/len(data_1)
np.exp(len(data_2) - len(data_1))